
IND IN
US 20190354596A1

(19) United States
(12) Patent Application Publication

Mirylenka et al .
(10) Pub . No .: US 2019/0354596 A1
(43) Pub . Date : Nov. 21 , 2019

(54) SIMILARITY MATCHING SYSTEMS AND
METHODS FOR RECORD LINKAGE

(52) U.S. CI .
CPC G06F 17/3053 (2013.01) ; G06F 17/18

(2013.01) ; G06N 99/005 (2013.01) ; GO6F
17/30483 (2013.01) (71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(72) Inventors : Katsiaryna Mirylenka , Zurich (CH) ;
Paolo Scotton , Rueschlikon (CH) ;
Christoph Adrian Miksovic Czasch ,
Aeugst am Albis (CH) ; Andreas
Schade , Langnau am Albis (CH)

(21) Appl . No .: 15 / 980,066

(57) ABSTRACT

A given query entity of a query database and a set of
reference entities from a master database are accessed ; each
entity accessed corresponds to an entry in a respective
database , which is mapped to a set of words that are
decomposed into tokens . For each reference entity , a closest
token is identified therein for each token of the given query
entity , via a given string metric . A number of closest tokens
are thus respectively associated with highest scores of
similarity between tokens of the query entity and tokens of
each reference entity . An entity similarity score is computed
based on said highest scores . A reference entity of the master
database is identified , which is closest to said given query
entity , based on the entity similarity score . Records of the
given query entity are linked to records of the master
database , based on the closest reference entity identified .

(22) Filed : May 15 , 2018

Publication Classification

(51) Int . Cl .
G06F 1730 (2006.01)
GO6N 99/00 (2006.01)
GO6F 17/18 (2006.01)

10

S12

12

S14

TO FIG . 3

Patent Application Publication Nov. 21 , 2019 Sheet 1 of 9 US 2019/0354596 A1

10 o S12

19 12

S14

TO FIG . 3

FIG . 1

20 3 S22

19
22

S24

2
FIG . 2 TO FIG . 5

Patent Application Publication Nov. 21 , 2019 Sheet 2 of 9 US 2019/0354596 A1

14

Master database Textual description
entry label
POWER ?

12

POWERS

" POWER7 refers to superscalar synimetric multiprocessors based on the Power
Architecture and released in 2010. "

" POWER8 refers to superscalar symmetric multiprocessors based on the Power
Architecture and becanie available in 2014. "
** POWER9 refers to superscalar syininetric multiprocessors based on the Power
Architecture and was announced in 2016. "

POWERS

13 FIG . 3 S16 12

Master database Cleaned , tokenized form
entry label
POWER7

POWERS

{ POWER7 , superscalar , symmetric , multiprocessors , Power , Architecture ,
released , 2010)
{ POWER8 , superscalar , symmetric , multiprocessors , Power , / Architecture ,
available , 2014)
{ POWER9 , superscalar , syinmetric , multiprocessors , Power Architecture ,
announced , 2016)

POWERS

FIG . 4 24 13

Query database entry label Textual description

Unlabeled entry # 1 " The POWER7 executes instructions out - of - order . "

Unlabeled entry # 2 has approximately 1.2 billion “ The POWER7
transistors . "

23 22 FIG . 5
S26

26

23

Query database entry label Cleaned , tokenized form

Unlabeled entry { POWER7 , executes , instructions , out - of - order :

to Unlabeled entry # 2 92 { POWER7 , 1.2 , billion , transistors

FIG . 6

Patent Application Publication Nov. 21 , 2019 Sheet 3 of 9 US 2019/0354596 A1

S32
0 ?? ? ***

????? 1

$

9 9

FIG . 7
32

S34
{

FIG . 8

S35 C 34

23

FIG . 9

35

S36 S36b

36 36a] 36b S36a
36a

B = 1.0 FIG . 10 FIG . 11 FIG . 12

S40
2

Patent Application Publication

34

Master entry label

database Textual description

POWER ?

" POWER7 refers to superscalar symmetric multiprocessors based on the Power

Architecture and released in 2010. "

POWER7

" The POWER7 executes instructions out - of - order .

POWER7

" The POWER7 has approximately 1.2 billion transistors .

Nov. 21 , 2019 Sheet 4 of 9

POWERS

" POWER8 refers to superscalar syminetric multiprocessors based on the Power

Architecture and became available in 2014 "

POWERS

" POWER9 refers to superscalar symmetric multiprocessors based on the Power

Architecture and was announced in 2016. "

33

32

FIG . 13

US 2019/0354596 A1

Patent Application Publication Nov. 21 , 2019 Sheet 5 of 9 US 2019/0354596 A1

S10 ($ 11 - S18) : Master database
pre - processing to provide access
to tokenized reference entities

S20 (S21 - S28) : Query database
pre - processing to provide access
to tokenized query entities

S30 : Match query and
reference entities

For each query entity

N For each reference entity
T

S32 : Compute distances (or similarity scores)
between pairs of inter - entity tokens

S34 , S35 : Identify closest token in current
reference entity based on distances

S36 , S362 , S36b : Compute similarity score
between current query and reference entities

End loop : Current reference entity

S38 : Identify closest reference entity

End loop : Current query entity

S40 : Link records from query entity with
records from closest reference entity

FIG . 14

Patent Application Publication Nov. 21 , 2019 Sheet 6 of 9 US 2019/0354596 A1

S10 : Master database pre - processing S20 : Query database pre - processing :

S11 : Access master database S21 : Access query database

S12 : Decompose into blocks S22 : Decompose into blocks

S14 : Decompose into entities S24 : Decompose into entities

S15 : Clean (concatenate) S25 : Clean (concatenate)

S16 : Tokenize S26 : Tokenize

S17 : Store tokenized entity S27 : Store tokenized entity

$ 18 : Provide access to
tokenized entities

S28 : Provide access to
tokenized entities

S31 : Identify previous similar query entities
and identify set of reference entities previously
found to be closest to such previous query entities

S32 - S38 : Identify closest reference entity
within set of closest reference entities

?
S40 : Link records from query entity with
records from closest reference entity

FIG . 15

Patent Application Publication Nov. 21 , 2019 Sheet 7 of 9 US 2019/0354596 A1

S10 (S11 - S18) : Master database
pre - processing to provide access
to tokenized reference entities

S19 : Form clusters of most
similar reference entities

S19a : Select reference entities
from each of the clusters to form
set of reference entities

S20 (S21 - S28) : Query database
pre - processing to provide access
to tokenized query entities

S32 - S38 : Identify reference entity that is closest to
a given query entity within set of reference entities

S39 : Identify cluster corresponding to closest
reference entity found Repeat for

each query entity
of each block

of query database S32 - S38 : Identify closest reference entity
within identified cluster of reference entities

S40 : Link records from query entity with
records from eventually closest reference entity

FIG . 16

Patent Application Publication Nov. 21 , 2019 Sheet 8 of 9 US 2019/0354596 A1

S36 S365 S40 S30

Linkage Final
database points

S38
S39 Model parameter update

(552)

Training
(offline) Storage

15 S50

09
2

FIG . 17

Patent Application Publication Nov. 21 , 2019 Sheet 9 of 9 US 2019/0354596 A1

Computerized unit 101

Memory controller (s)

M
Memory

yo controller (s)

System Bus 140

Display controller

FIG . 18

US 2019/0354596 A1 Nov. 21 , 2019
1

SIMILARITY MATCHING SYSTEMS AND
METHODS FOR RECORD LINKAGE

BACKGROUND

[0001] The invention relates in general to the field of
computer - implemented methods and systems for record
linkage . In particular , it is directed to computerized methods
that rely on similarity matching of tokenized database enti
ties to perform automatic record linkage .
[0002] Data has become a precious source for enterprise
decision making . For instance , in the information technol
ogy (IT) industry , strategical marketing decisions are often
made based on information regarding products installed at
customers ' sites and products already sold to such custom
ers . Such information is available through internal and
commercial datasets which are often scattered over multiple
computers or storage systems . In addition , the relevant
information is often available through heterogeneous or
dissimilar representations . In such cases , one first needs to
link items present in the various datasets , in order to be able
to get full insights from such items .
[0003] Of particular interest is the record linkage of data
entities , such as descriptions of products , services and
company names . Different and yet related descriptions of
such items is often found in several datasets . Differences
across the item representations may include different for
mats , synonyms , abbreviations , acronyms and also typo
graphical errors . The challenge is , under such circum
stances , to be able to match descriptions corresponding to a
same item .
[0004] Assume that a dataset of entities are available ,
which together make up a master database . The objective is
to match records of a given query database (i.e. , another ,
similar dataset) against the master database . One way to
achieve this is to find the best matching catalog entry for
each item from the query database . Now , both the query and
master databases are results of human work . E.g. , their
vocabulary is likely not standardized , and the entity descrip
tions may contain typos , omissions , and other spelling
variations .
[0005] To find the best matches , a quantitative similarity
measure is needed , to handle inconsistencies such as men
tioned above . Assuming that such a similarity measure is
available , matching query records against a master database
likely implies to compare a large number of items for
similarity . Notwithstanding , the amount of training data may
be limited , which prohibits direct applications of advanced
machine learning and probabilistic record linkage tech
niques . In such a context , another type of automatic record
linkage technique is needed , which ideally should be fast
and efficient .
[0006] State - of - the - art methods of record linkage notably
include fuzzy or probabilistic record linkage , based on
machine learning and deep learning models . However , such
techniques cannot be used in a context where the amount of
training data is limited , as noted above . Thus , other methods
need be devised , which allow for certain statistical infer

values indicate higher similarity . String similarity metrics
can be roughly classified into edit - distance based metrics
and token - based metrics .
[0008] Edit - based measures express similarity by counting
the number of primitive operations required to convert one
string into another , i.e. , insertion , deletion , substitution and
transposition . Different subsets of such operations may
nevertheless be considered , depending on the algorithm
variant adopted . For example , the Jaro similarity measure
[1] relies on the number of matching characters and neces
sary transpositions , whereas the Levenshtein similarity mea
sure [2 , 3] counts the number of insertion , deletion , and
substitution operations required . Usually a unit cost is
assigned to a single operation and the sum of all costs is
returned as the distance between strings . A variant is the
Damerau - Levenshtein distance . Different cost values can be
assigned to individual operations leading to the weighted
Levenshtein distance . Any distance accordingly computed
can be turned into a quantity that measures the similarity .
For example , a similarity measure s can be expressed as the
opposite of a distance d (s = -d) or as an affine function of d ,
whose coefficient is the reciprocal of the maximal length of
the two strings w1 , W2 compared , i.e. , s = 1 - d / Max (W1 , W2) .
[0009] Token - based distance measures consider two
strings as multisets of characters . For example , the so - called
WHIRL similarity [4 , 5] measures the distance between two
strings in terms of cosine similarity of weighted TF - IDF
vectors of words , where TF - IDF stands for “ frequency
inverse document frequency ” , which is a statistical measure
for the importance of terms in a set of documents . As another
example , methods based on so - called q - grams [5] , which
involve the TF - IDF too , divide a string into q - grams instead
of words and computes the weight of each word according
to its TF - IDF . The distance between two strings is computed
as the cosine similarity of the weighted words .
[0010] The following papers , which illustrate the back
ground art , address concepts that are also used in this
document :
[0011] [1] Matthew A. Jaro . 1989. Advances in Record
Linkage Methodology as Applied to Matching the 1985
Census of Tampa , Fla . J. Amer . Statist . Assoc . 84 , 406
(1989) , 414-420 .

[0012] [2] V. I. Levenshtein . 1966. Binary Codes Capable
of Correcting Deletions , Insertions and Reversals . Soviet
Physics Doklady 10 , 8 (February 1966) , 707-710 .

[0013] [3] Alexandr Andoni , Robert Krauthgamer , and
Krzysztof Onak . 2010. Polylogarith - mic Approximation
for Edit Distance and the Asymmetric Query Complexity .
(2010) .

[0014] [4] William W Cohen . 1998. Integration of hetero
geneous databases without com - mon domains using que
ries based on textual similarity . In ACM SIGMOD
Record , Vol . 27. ACM , 201-212 .

[0015] [5] Ahmed K Elmagarmid , Panagiotis G Ipeirotis ,
and Vassilios S Verykios . 2007. Duplicate record detec
tion : A survey . IEEE Transactions on knowledge and data
engineering 19 , 1 (2007) , 1-16 .

SUMMARY ence .

[0007] A number of algorithms are available , which mea
sure the distance between strings for approximate matching .
They implement a distance metric or , closely related , a
similarity score that maps two input strings to a number .
Smaller distance or , equivalently , higher similarity score

[0016] According to a first aspect , the present invention is
embodied as a computer - implemented method of record
linkage . First , a given query entity of a query database and
a set of reference entities from a master database are
accessed , wherein each entity accessed corresponds to an

US 2019/0354596 A1 Nov. 21 , 2019
2

reference entities in the reference database are clustered ,
prior to attempting to match a query entity , to accelerate the
linkage ;
[0025] FIG . 17 is a diagram that schematically represents
a data management system , involving a machine learning
subsystem to learn parameters involved in methods for
linking records according to embodiments ; and
[0026] FIG . 18 schematically represents a general purpose
computerized unit , suited for implementing method steps as
involved in embodiments of the invention .
[0027] The accompanying drawings show simplified rep
resentations of devices or parts thereof , as involved in
embodiments . Similar or functionally similar elements in the
figures have been allocated the same numeral references ,
unless otherwise indicated .

entry in a respective database , which entry is mapped to a set
of words that are decomposed into tokens . Next , for each
token of the given query entity , a closest token is identified
in each reference entity of the set of reference entities
considered . This is achieved thanks to a given string metric .
That is , a number of closest tokens are identified in said each
reference entity , which are respectively associated with
highest scores of similarity (or , equivalently , smallest dis
tances) between tokens of the query entity and tokens of said
each reference entity . Then , an entity similarity score
between said given query entity and said each reference
entity is computed , based on said highest scores of similar
ity . A reference entity of the master database is subsequently
identified , based on the entity similarity score computed for
each of the reference entities , which is closest to said given
query entity . Finally , records of the given query entity are
linked to records of the master database , based on the closest
reference entity identified . A similar process can be carried
out for a number of query entities , e.g. , as obtained by
decomposing a query database .
[0017] According to another aspect , the invention is
embodied as a computerized data management system that
is specifically configured to implement a method such as
described above .
[0018] A final aspect of the invention concerns a computer
program product for linking records of a given query entity
to records of a master database . The computer program
product comprises a computer readable storage medium
having program instructions embodied therewith , where the
program instructions are executable by one or more proces
sors , to cause to take steps according to the above method .
[0019] Computerized systems , methods , and computer
program products embodying the present invention will now
be described , by way of non - limiting examples , and in
reference to the accompanying drawings .

DETAILED DESCRIPTION

[0028] The following description is structured as follows .
First , computerized methods of record linkage are described
(sect . 1) . The next sections concern related computerized
systems and computer program products (sect . 2 and 3) .

1. Computerized Methods of Record Linkage

1.1 High - Level Description of the Method and Variants
Thereto

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The accompanying figures , where like reference
numerals refer to identical or functionally similar elements ,
and which together with the detailed description below are
incorporated in and form part of the present specification ,
serve to further illustrate various embodiments and to
explain various principles and advantages all in accordance
with the present disclosure , in which :
[0021] FIGS . 1-13 illustrate , step - by - step , a method for
linking records from distinct databases , wherein query enti
ties from a query database are matched to closest reference
entities from a master database , based on similarity scores
computed from closest distances between tokens of such
entities , as in embodiments . Use is made of purposely
simple examples of database entries , as well as tables and
matrices , which illustrate successive operations performed
according to this method ;
[0022] FIG . 14 is a flowchart illustrating high - level steps
of such a method , as in embodiments ;
[0023] FIG . 15 is a flowchart capturing high - level steps of
a variant to the method of FIG . 14 , wherein previously
processed query entities are used to restrict the set of
potential matches in the reference database and thereby
accelerate the linkage . In addition , FIG . 15 show detailed
steps for pre - processing the query and reference databases ,
as involved in embodiments ;
[0024] FIG . 16 is a flowchart illustrating high - level steps
of another variant to the method of FIG . 14 , wherein

[0029] In reference to FIGS . 1-16 , an aspect of the inven
tion is first described , which concerns a computer - imple
mented method of record linkage . The context is assumed is
to be the same as the context discussed in the background
section . On the one hand , a set of entities are available ,
which together form a master database 10. There , the
objective is to match records of a given query database 20
against records from the master database 10. To that aim ,
one needs to find the best - matching catalog entry for each
item from the query database 20 , which requires a quanti
tative similarity measure that makes it possible to cope with
inconsistencies between item descriptions in data entities
from the two databases 10 , 20 .
[0030] Thus , two databases 10 , 20 are available , which
consist of a reference database 10 (likely the largest data
base) and a query database (likely the smallest) , as depicted
in FIGS . 1 , 2. In fact , and notwithstanding depictions used
in FIGS . 1 , 2 , the respective datasets may be stored on a
single storage unit , or on more than two storage units . That
is , a “ database ” as understood herein must be construed as
a more or less structured set of data (possibly available
through different file formats) , and held in a computerized
system , which may involve one or more storage units , on
which such a set of data is stored . Basically , the aim is to link
records from the query database 20 to records from the
reference database 10. To achieve this , the method proposed
compares items from the query database 20 with items from
the master database 10. Yet , because such comparisons may
easily become intractable , some simplification is required ,
the key being to find a sound level of simplification , so as not
to compromise the subsequent data linkage . This is achieved
as described below . This method is first described in refer
ence to the flowchart of FIG . 14 and with respect to a given
query entity , whose records are to be linked to records of a
most similar entity in the reference database . The method is
then exemplified , step - by - step , in reference to FIGS . 1-13 .

US 2019/0354596 A1 Nov. 21 , 2019
3

[0031] First , referring to FIG . 14 , a given query entity 23 ,
26 from the query database 20 and a set of reference entities
16 from a master database 10 need be accessed at some
point . Providing access to such entities may possibly require
some data pre - processing , as generally denoted by refer
ences S10 , S20 in FIGS . 14-16 . Such data pre - processing
may in fact involve a number of pre - processing steps ,
denoted by references S11 - S18 , S21 - S28 and later described
in reference to FIG . 15 .
[0032] Each entity 16 , 26 accessed at steps S18 , S28
corresponds to an entry 13 , 23 in a respective database 10 ,
20 , which entry is mapped to a set of words . Initially , such
sets of words may typically be sentences , or any form of
descriptions 14 , 24 in a natural language . Yet , at some point ,
such descriptions are decomposed into tokens 16 , 26 .
[0033] Assuming that tokenized forms of the considered
entities are available , some comparison is carried out for
each reference entity of the considered set of entities 16 from
the master database 10 , whereby a given query entity is
compared to each reference entity . First , and for each token
of the given query entity 23 , 26 considered , a closest token
35 is identified S32 - S35 in said each reference entity 16 ,
according to any suited string metric . That is , scores of
similarity 34 can be associated to pairs of tokens in each
entity pair considered ; the closest tokens 35 that are even
tually identified S35 in a reference entity are those that are
respectively associated with the highest scores of similarity
34 with the tokens from the query entity 23 , 26. That is , for
each token from the query , a closest token is identified in the
reference entity that is being compared to the query entity .
[0034] Then , an entity similarity score 36 , 360 , 36b is
computed S36 , S360 , S36b , which measures the similarity
between said given query entity 23 , 26 and each of the
compared reference entities 16. The entity similarity scores
are computed based on the highest scores of similarity 34
found for each token from the query entity .
[0035] Next , a reference entity is identified S38 as being
the closest to said given query entity 23 , 26 , based on the
entity similarity scores 36 , 36a , 36b computed for each of
said reference entities 16. Finally , records 24 of the given
query entity can be linked to records 14 of the master
database 10 , based on the closest reference entity identified
for that query entity .
[0036] Token - based distances as used herein imply a
tokenization S16 , S26 , whereby a string sequence is split
into words and / or other symbols (e.g. , concatenated words) ,
using such separators as whitespace , line break , and / or
punctuation characters . Tokens provide a suited granularity
for the problem at hand , whereby comparisons are initially
performed at the level of tokens . Most similar tokens are
those that have highest scores of similarity with tokens from
the query entity 26 or , equivalently , those that are at the
smallest distance from such tokens . Note , although similar
ity measures and distances will typically vary oppositely or
inversely (a smaller distance yields a larger similarity) , any
form of similarity measures is , in some way , an appreciation
of a distance between two items . Thus , similarity measures
and distances are generally considered to be equivalents for
the purpose of implementing this invention , unless other
wise stated , e.g. , as in embodiments specifically relying on
specific similarity definitions , which are described later .
[0037] The token comparisons S32 may be performed
based on a vocabulary of unique tokens of the master
database 10 , in order to reduce the number of such com

parisons . Preferably though , the token comparisons are
performed for each reference entity 16 (one after the other)
and for all tokens therefrom , using mere loops , as assumed
in FIG . 14. Reasons for doing so is that the descriptions 14 ,
24 shall , once tokenized , often include distinctive (and
therefore unique) words . Also , the number of entities may be
very large , and typically much larger than the average
number of words per entity . In such a case , maintaining a
vocabulary of unique tokens may be computationally
demanding , especially where frequent updates of the mater
database are required . Thus , it may finally be easier to
compute distance matrices between all token pairs for each
pair of entities considered . In all cases , however , the entity
similarities can be computed S36 based on the sole highest
similarity scores obtained S34 , S35 for tokens from the
query entities , which drastically reduces the complexity of
the entity comparison S36 - S38 .
[0038] It remains that , if (n) is the average number of
tokens per entity and N is the number of reference entities
that need be compared to a query entity , the complexity of
the first operations S32 scales as N (n) 2 if performed for
each of the (n) tokens (on average) of the query entity and
each of the (n) tokens (on average) of the reference entities ,
whereas it would scale as (n) nu , if a vocabulary of n ,
unique words is maintained . As n , should be much less than
N (n) in practice , the use of a vocabulary should in prin
ciple be more efficient . However , such a benefit becomes
questionable when the number of unique , distinctive words
become proportionally more important , as in databases of
company names , commercial products and services . All the
more , a vocabulary of unique tokens need be updated after
each record linkage operation and additional operations are
subsequently required at step S36 , in order to identify which
score is associated with which token of each of the N
reference entities . Thus , mere loops may suffice to perform
the token comparisons , as assumed in FIG . 14 , though
parallelization may be contemplated , in variants .
[0039] In all cases , the tokenized approach chosen here for
entity comparisons can be made fully or (at least partly)
independent from the token order in each entity . The use of
a similarity measure allows fuzzy matching of tokens , which
is resilient to typos and other inconsistencies . Another
advantage compared to prior art methods is that present
methods do not require the words to be split into q - grams ,
so that the word semantics (which can be very strong in
entity descriptions as considered here) does not get lost .
Preferably , the Levenshtein similarity measure is used to
capture small inconsistencies between tokens , as it allows
typos and other small inconsistencies to be taken into
account . In addition , fast implementations of the Leven
shtein similarity algorithm are available , which may , in
some cases , be computed in near - linear time [3] . Thus ,
variants to the Levenshtein similarity measure can be con
templated . More generally though , any suitable similarity
measure can be envisaged .
[0040] Assume , that the databases 10 , 20 already include
data entities that are in a suitable shape for comparison
purposes , which might require some pre - processing , as later
described in reference to FIGS . 1 , 2. For example , FIGS . 3-6
depict tables 12 , 22 , which aggregate several entities 13 , 14
and 23 , 24 from the databases 10 , 20. Note , tables are used
for the sake of illustration only : the actual entities 13 , 14 and
23 , 24 may actually be internally stored under any suited
format . Initially , such entities correspond to respective

US 2019/0354596 A1 Nov. 21 , 2019
4

entries 13 , 23 , which may be labelled (e.g. , “ POWER7 ” ,
" POWER8 ” , etc. , as in entities obtained from the master
database 10) , or not (as in entities 23 , 24 obtained from the
query database) . Such entries are mapped to respective sets
of words 14 , 24 , which initially may be mere descriptions of
the corresponding entry labels . E.g. , “ POWER7 refers to
superscalar symmetric multiprocessors based on the Power
Architecture and released in 2010 ” . Next , such descriptions
14 , 24 are tokenized (and possibly cleaned to get rid of stop
words and the likes) during respective steps S16 , S26 , which
are likely performed at different times , for reasons discussed
later . The tokenization yields , e.g. , vector representations 16 ,
26 of words as depicted in FIGS . 4 , 6 with respect to entities
from the two databases 10 , 20 .
[0041] Next , referring back to FIG . 14 , steps S32 - S35 aim
at identifying closest tokens 35 in the master database and ,
this , for each of the tokens of the query entity considered .
Such steps may be carried out by first computing S32 all
scores 32 of similarity between tokens of the query entity
and tokens from the master database , as noted earlier . E.g. ,
such scores can be computed for each pair of tokens and for
each pair of entities considered . For example , assume that
two query entities 91 , 42 are to be successively processed
(which respectively include 4 and 5 tokens , after tokeniza
tion) for comparison against three reference entities ?1 , M2 ,
Uz , which include 8 tokens each , after tokenization , as in the
example of FIGS . 7-12 . In this example , the three reference
entities M1 , M2 , Uz form a reduced set of reference entities that
are considered for comparison with 91 and 92 (considering
one query entity q , at a time) . This set may well have been
inferred based on a history of previous queries or by
clustering , as later described in reference to FIGS . 15 and
16 .
[0042] In this example , the comparisons performed at step
S32 give rise to 2x3 = 6 distance matrices . The upper matri
ces in FIG . 7 comprise , each , 4x8 distances , whereas the
lower matrices comprise , each , 5x8 distances , owing to the
numbers of tokens in each entity considered . Such distances
are computed according to a chosen string metric (here the
Levenshtein metric) , and the scores 32 computed so far
reflect pair distances 32 between respective tokens from the
query entities 91 , 92 from a query database 20 and tokens
from the entities Un - Uz from the master database 10 .
[0043] Then , closest tokens 35 can easily be identified
S34 , S35 for each token of the given query entities 41 , 42 , in
each of the reference entities U1 - Hz , based on the distances
32. In that respect , FIG . 8 shows the minimal distances 34
(thus corresponding to highest scores) to each query token ,
which correspond , each , to minima from each matrix row of
FIG . 7. The corresponding tokens from the reference entities
U1 - Uz are identified in FIG . 9 , which depict positions (indi
ces) of such tokens . Note , although distances are reported in
FIGS . 7 , 8 and 10 , for the intelligibility of the description of
the present examples , similarity scores (expressed as , e.g. ,
opposite of distances or reciprocal of translated distances)
could have used as well .
[0044] When degenerated distance minima (or score
maxima) are found , any corresponding reference token
could be selected , which has little impact in practice . For
example , consider the q? - 4 , matrix of FIG . 7 : here the
minimal pair distance found for the first token of q? (upper
row of the matrix) is 0 , which value is accordingly identified
and reported in the 9. - u , vector of FIG . 8. The value is
indeed (as it measures the distance between identical tokens

(“ POWER7 ”) in that case . And the corresponding reference
token is indeed the first one of the upper word vector of FIG .
4 , whence the value 1 reported in the first vector element of
the q? - u , vector of FIG . 9. However , the closest distances
found between the third token of q . (i.e. , “ instructions ”) and
any token of u , is 10 , which minimal value is degenerated
because the word “ instructions ” is as close from “ supersca
lar ” , “ symmetric " , or " multiprocessors ” , according to the
standard Levenshtein metric (i.e. , the number of one - ele
ment deletions , insertions , and substitutions required to
transform the first word into the second) . There , it does not
matter which corresponding token of u , is identified as the
closest token ; the token position reported in the 41-4 , vector
of FIG . 9 corresponds to the position (2) of the second token
of u , in that case , i.e. , the first token among the three that
gives the distance of 10 .
[0045] Next , further referring to FIGS . 10-12 , the entity
similarity score 36 , 36a , 36b is preferably performed by
summing S36 , S360 , S36b highest scores of similarity 34
associated with the closest tokens 35 identified at step S35
(FIG . 9) in each of the reference entities 16 considered .
Importantly , only the highest scores (or smallest distances)
obtained for each of the query tokens are considered to
compute the entity similarities . In the example of FIG . 10 ,
the smallest distances obtained for each token of q? , 42 (FIG .
9) are simply summed , yielding a cumulated distance matrix
that already designates the reference entity uy as closest
entity to q? , in accordance with expectations from FIGS . 4 ,
6. Note , the sum may possibly be normalized in practice
(e.g. , by the sum of tokens in the respective query entities) ,
contrary to the calculation used for FIG . 10. Now , FIG . 10
also shows that entities uz and uz are found at an equal
overall distance from 42 , when simply summing the smallest
distances obtained for each token of 92. This is due to some
compensation . Therefore , a similarity measure s is prefer
ably used , instead of a mere cumulated distance , which can
for instance be expressed as the reciprocal of a translated
distance d . E.g. , s = 1 / (1 + d ") , where k is some integer (for
example k = 1 , as used to obtain the values reported in FIG .
11) . Such a measure favors exact matches . Accordingly , uz
and uz are now found to be the closest entities from q? and
42 , respectively .
[0046] Comments are in order . First , different expressions
of the similarity measure s could be used , instead of s = 1 /
(1 + d ") . For example , one may use the expression s = (1 + d) -K ,
where k is some positive integer (k > 1) . As another example ,
one may use the expression s = 1 - d / Max (W1 , W2) , as noted
earlier . Such variants to the expression of the similarity
measure do , qualitatively , not impact the results , inasmuch
as they all lead to the same conclusion , i.e. , My and uz are the
closest entities from q? and 92 , respectively . Minor differ
ences may , however , be observed . For example , depending
on the actual expression used , the similarity between q , and
y may be found to be larger than the similarity between 92

and u2 , contrary to the results obtained with s = 1 / (1 + d) , as
used to compute the results shown in FIGS . 11 and 12 .
Finally , a threshold coefficient ß may be used , to discard
potential matches , as depicted in FIGS . 11 and 12. This point
is discussed later in detail .
(0047] As seen in FIG . 4 , two types of tokens may be
considered , i.e. , alphanumeric tokens vs. non - alphanumeric
tokens . As it may be realized , alphanumeric tokens (i.e. ,
containing both alphabetical and numerical strings) will be
much more distinctive in practice , whence the importance of

US 2019/0354596 A1 Nov. 21 , 2019
5

such tokens . The latter could therefore be given more weight
in the computation of entity similarity scores , as in step
S36b , FIG . 12. The other type (" non - alphanumerical ”) of
tokens may for instance be defined as tokens that are free of
characters (e.g. , letters) and / or digits . E.g. , these may for
example be all tokens that are free of any digit , as assumed
in FIG . 12. In that case , the highest scores of similarity 34
(as obtained after step S34) may further be weighted S36b
differently , depending on whether they are associated to
closest tokens 35 of the first type or of the second type , as
in FIG . 12 , where weights of 1 are assigned to scores of
alphanumeric tokens , whereas scores for query tokens free
of digits receive weights of 0.5 only , in this example . Again ,
for the process of decision making whether a match has
occurred or not , a decision threshold ß could be used .
[0048] More explicitly , the entity similarity scores LT may
advantageously be computed S36b , for any two entities ,
according to :

LT = • s (t ;) . 1 (1 € A ,) + s (ti) . 1 (1 € A)
XP - 1 Q. 1 (1 ; E A ,) + 1 (t ; E A)

where a is the weight assigned to the highest scores s (t :)
retained for non - alphanumeric tokens , i.e. , te ? , wherein ,
e.g. , AE (0,1] . On the contrary , highest scores s (t ;) retained
for alphanumeric tokens te A are assigned a weight equal
to 1. Use was further made of the indicator function 1 (t , E
X) , which function outputs 1 if t ; EX and 0 otherwise .

[0049] Referring now to FIG . 17 : in embodiments , a
machine - learning model 2 may further be trained S50 for it
to learn optimal values for a or , equivalently , the relative
weight a : 1 as used to weight the highest scores of similarity
34 summed at step S36b . Concurrently , the same (or a
distinct) model 2 may be used to learn optimal values of the
threshold parameter B. Learning can for instance be
achieved based on successive query entities that are pro
cessed S32 - S38 to link records 24 associated to such query
entities to records 14 of the master database 10. E.g. , a
supervised training S50 is preferably relied upon . This is
discussed later in detail .
[0050] Assuming that a threshold parameter ß is available ,
records 24 of a given query entity 23 , 26 can eventually be
decided to be linked to records 14 of the master database 10
only if the entity similarity score found S38 for the closest
reference entity is larger than this parameter B , as high
lighted in FIG . 11 or 12. For example , assuming that an
optimal threshold was found , which is equal to 1.1 , only the
entity similarity scores obtained , which exceed this value ,
could be retained as effective matches , whereas other entities
would be discarded . Similarly , a threshold value of ß = 1.0
would , in the example of FIG . 12 , immediately discard
entities uz and uz as potential matches . This also means that
no match may possibly be found , which would eventually
lead to create a new , independent entry in the master
database (without any linkage) , upon integrating records
corresponding to the queries processed . In other cases ,
several matches may possibly be found , this possibly caus
ing multiple record linkages .
[0051] When an entity (e.g. , u ,) is retained as a match (as
assumed in FIGS . 11 , 12) , then records associated to the
queries q? , 42 can be accordingly linked to an entry of the

matching entity . For example , in FIG . 13 , a match is
assumed to be found for each of q? and q2 with the first
reference entity Hi , hence leading to an integration S40 of
records corresponding to q , and 42 that are linked to records
ofu ,. That is , the same entry “ POWER7 ” is now mapped to
each record of the previously unlabeled query entities q , and
42. Again , the tabular representation of FIG . 13 is merely a
guide for the eye .
[0052] At present , the pre - processing steps S11 - S18 and
S21 - S28 are discussed in more detail . Such steps will
typically not be performed concurrently . For example , the
master database 10 may be continually updated , e.g. , as a
background task upon integrating new data therein , such that
tokenized versions 16 of the records 14 are constantly
available . For example , tokenized versions 26 of any new
records 24 may be stored upon integrating such records 24
in the master database 10. Still , a first - time implementation
of the present methods may require to perform pre - process
ing steps S11 - S18 as depicted in FIG . 15 , which are here
assumed to be mere counterparts of steps S21 - S28 , as
performed in respect of query entities .
[0053] Any new query may be processed one at a time ,
i.e. , one after the other , although parallelization may be
available , in variants . Referring back to FIGS . 5 , 6 , when a
given query entity 23 , 24 from the query database 20 is to
be accessed S28 for matching against entities of the master
database 10 , this query may first be processed according to
steps S21 - S27 . This query entity 23 , 24 corresponds to an
entry 23 of the query database , which entry 23 is mapped
onto a textual description 24. As said earlier , this query
entity 23 , 24 may first need be pre - processed , so as to
decompose S26 the textual description 24 into tokens 26. In
variants , however , query entities may have been pre - pro
cessed at an earlier stage and thus be readily processed for
matching again the master database 10 .
[0054] Moreover , additional steps may be required . For
instance , the decomposition of the textual description 24
may include sub - steps S25 , S26 , whereby some of the
consecutive words of the textual description 24 are concat
enated S25 to form corresponding tokens 26. Reasons for
doing so is that composite words and other signs in data
bases of commercial names are often spelled differently
(sometimes separated by a space or dash , or not separated at
all) . Thus , concatenation steps S15 , S25 are preferably
performed so as to increase the chance for same entity
records to be identically spelled , eventually . Incidentally ,
this results in decreasing the number of tokens per entity ,
after tokenization S16 , S26 . For example , common variants
of the IBM name , be they correctly spelled or not (e.g. ,
“ International Business Machines ” , “ International - Busi
ness - Machines ” , etc.) , could all be concatenated to form the
basis of a same elemental record , which may later on be
transformed into a same record (e.g. , “ IBM ”) .
[0055] In addition , consecutive words (i.e. , strings) may
be concatenated at steps S15 , S25 so as to include , on the one
hand , a string of characters (e.g. , purely alphabetical char
acters) and , on the other hand , a string of digits , to form
alphanumeric tokens that involve , each , both letters and
numerals , for the reasons mentioned earlier . For example , as
“ POWER7 ” may possibly appear in some description , incor
rectly spelled as “ POWER 7 ” , the two consecutive strings
“ POWER ” and “ 7 ” may be sought to be concatenated to
form “ POWER7 " . More weight can be given to such tokens
upon summing S36b scores of token pairs to obtain the

US 2019/0354596 A1 Nov. 21 , 2019
6

entity scores , as these happens to be much more distinctive
in practice for applications as contemplated herein . Still ,
even in such cases , the minimal granularity chosen for the
tokens remains words . I.e. , each token includes at least a
word from the initial description 14 , 24 , which word is
possibly augmented by another string . Other approaches are
known , which could also be used in the context of this
invention to capture discriminative words . Examples are
mentioned later .
[0056] In addition , and prior to tokenizing records 14 , 24 ,
additional cleaning S15 , S25 may be required , to get rid of
stop words and the like , as usual . After tokenization S16 ,
S26 , tokenized versions 16 , 26 of the entity records 14 , 24
can be suitably stored , so as to be readily accessible S18 ,
S28 for matching purposes .
[0057] Depending on the application scenario , additional
steps may be required , prior to steps S15 - S17 (or S25 - S27) .
For example , the initial databases 10 , 20 may possibly not be
readily utilizable for matching entities . In particular , a query
database 20 may first need be decomposed S22 , S24 into
suited query entities (FIGS . 1 , 2) . In practice , the query
entities obtained at step S27 may be processed S32 - S36b
one after the other (or in parallel) , to match against a set of
entities of the master database . I.e. , a given query entity is
selected at step S28 for matching against a set of reference
entities , which are successively selected at step S18 for
performing such comparisons .
[0058] Entity descriptions 14 , 24 can be regarded as an
arbitrary set of words . As explained earlier , matching a given
pair of descriptions entails tokenizing them into individual
words (or concatenated words) . The resulting tokens are
then pair - wisely compared to compute a similarity score .
Finally , the token similarities are aggregated into an overall
similarity score . As a consequence , matching a query record
against a master database requires to compare a large
number of tokens for similarity . For this reason , additional
blocking may be used $ 12 , S22 (FIGS . 1 , 2) , whereby
databases 10 , 20 are first decomposed into blocks 12 , 22 , to
ease the subsequent comparisons S32 - S36b . E.g. , those
blocks 22 that , clearly , are incompatible with a given block
12 need not be taken into account when attempting to match
a given query entity from this given block 12 .
[0059] In addition , referring to both FIGS . 15 and 16 ,
similar reference entities 16 of the master database 10 may
advantageously be grouped S19 , S19a , S31 to further restrict
the set of reference entities 16 to be used for matching a
given query entity . There , several approaches can be con
templated , as discussed below . In each case , the subsequent
computation of the entity similarity scores can effectively be
performed for a reduced set of reference entities 13 , 16 from
the master database 10 , which improves the performance of
the similarity matching system .
[0060] A first approach , which is reflected in FIG . 15 , is to
group S31 similar reference entities 16 based on query
entities successively processed (leveraging the history of
past queries) . Namely , upon receiving a given query entity
for matching purposes , the algorithm may first attempt to
identify , among query entities that have previously been
processed for record linkage (through steps such as S21
S28 , S32 - S38) , a set of most similar query entities . Then ,
because closest reference entities 16 have already been
identified for such previous query entities , a subset of
reference entities 16 can easily be identified . Then the
algorithm may attempt to match S32 - S38 the given query

entity received against this subset of reference entities , for
record linkage purposes S40 . In case no match is found , then
the subset may be progressively extended to most similar
reference entities , and so on .
[0061] A second approach is depicted in FIG . 16. Here ,
reference entities 16 of the master database 10 are clustered
S19 to form clusters of similar reference entities . In a
subsequent steps , reference entities are selected S19a from
each of the clusters obtained S19 to form a set of dissimilar
reference entities , to which a current query entity is com
pared . That is , the set of reference entities considered for
comparison purposes now comprises reference entities
selected S19a from respective clusters , which entities are
therefore dissimilar , a priori . Upon completion of steps
S32 - S38 , a closest reference entity may be identified , if any ,
from which another set of reference of entities may be
devised , by similarity , so as to refine the comparisons
S32 - S38 .
[0062] The reference entities can for instance be initially
clustered S19 based on similar metrics and averages as
described above . In variants , any similarity property may be
used to cluster S19 the master database .
[0063] In both the variants of FIGS . 15 and 16 , the steps
aiming at identifying closest tokens 35 and closest reference
entities will effectively be performed for reduced sets of the
reference entities of the master database 10 , which further
improves the efficiency of the matching algorithm .
[0064] The above embodiments have been succinctly
described in reference to the accompanying drawings and
may accommodate a number of variants . Several combina
tions of the above features may be contemplated . Examples
are given below .

1.2 Specific Embodiments of Methods of Record Linkage
[0065] Embodiments described below aim at solving the
problem of entity matching for both company names and
product descriptions , for which a similarity measure is
desired , which is :
[0066] independent or partially independent of a token
order (i.e. , words or concatenated strings) ,
[0067] resilient to small typos and text inconsistencies ,
and
[0068] giving more weight to matching scores of discrimi
native tokens .
[0069] On the one hand , discriminative tokens can be
defined in terms of TF - IDF weighting , as captured using ,
e.g. , the so - called WHIRL similarity . In simpler variants ,
e.g. , for IT products : almost all tokens that remain after
cleaning may be considered as equally important in the
product descriptions , subject to alphanumeric tokens , which
could be given more weight , as discussed in sect . 1.1 .
[0070] With this regard , a hybrid similarity measure can
be used , which is based on the Levenshtein measure that is
applied to tokenized product descriptions . Before applying
the similarity measure , product descriptions are prepro
cessed by removing unnecessary punctuation , spaces , upper
case , merging short tokens with consecutive numeric tokens ,
e.g. , so as to transform “ z 10 ” into “ z10 " . Vendor names of
products and company names get additional preprocessing
by eliminating uninformative stop - words like “ inc . ” , “ corp .
” , etc. , and by using special mapping dictionaries for brand
names and acronyms , for example , “ IBM ” ? “ International
Business Machines Corporation ” .

US 2019/0354596 A1 Nov. 21 , 2019
7

[0071] Besides properties described above , the similarity
matching system may have parameters that can be trained
for each particular use case , which makes it adaptable to
different applications . Such parameters may include one or
more of : the weight a of alphanumeric tokens , the impor
tance of the token order , and the strength ß of the similarity
scores . As the number of parameters is small , the parameters
can be trained using very limited training data that capture
correct matches .
[0072] A record that represents an entity q from the query
database is split into tokens ti , i = 1 , 2 , ... , n that are
compared with tokenized records from the master database .
For each token in a query entity we search for the closest
token r , k = 1 , ... , m in a reference entity u from the master
database , thereby obtaining a corresponding , highest simi
larity score s (t ;) , which can be written :

s (t :) = Max [LevenshteinScore (t ; nk) , 97 Eu] .
[0073] The scores of the query tokens are then aggregated
obtaining the similarity score of the record pair . As
explained in sect . 1.1 , the LT similarity score for a query line
q against the master entity u can be computed as follows :

as

? Ji = 1 LT (q , u) =
Q • s (t ;) . 1 (ti E A ,) + s (t ;) . 1 (t ; E - A)
X = 1 a · 1 (t ; E A ,) + 1 (t ; E A) 1

[0074] Imposing ae (0 , 1] makes sure that alphabetic
tokens always receive a weight that is smaller than or equal
to the weight of alphanumerical tokens . Various texts were
performed , to verify the hypothesis about the importance of
the alphanumeric tokens . A pair with the largest LT simi
larity score is considered to be the best match . Yet , because
certain product records should not be matched , a further
parameter ß is used , which can be set as BE (0 , 1] , provided
certain normalization conditions are satisfied . If the closest
record has a similarity score larger than B , the entity q from
a query dataset is considered to be matched to the entity u
from the master dataset , otherwise q is considered to be
unmatched .
[0075] In embodiments , only the best match , whose maxi
mum similarity score is larger than B , could be considered as
a match . In variants , the top - k matches might be considered
as actual matches . Parameters a and ß can advantageously
be trained to achieve an optimal similarity measure . In other
variants , only ß is trained .

methods discussed earlier . Some of the data points may be
selected S39 for training purposes , and accordingly stored
on a data repository 15 , e.g. , on any suitable memory or
storage component of the system 1. The points selected at
step S39 may for example be points that have been validated
by an expert .
[0078] Selected data point can then be used to train S50
the network 2 offline . Upon completion of a training cycle ,
updated parameters are passed to another unit 101 of the
system (not shown in FIG . 17 , see FIG . 18) , for it to
implement steps S32 - S40 , based on such updated param
eters . Meanwhile , the model may be re - trained , based on
newer training data selected at step S39 , and so on .
[0079] FIG . 18 depicts a general computerized unit 101 ,
which can advantageously be used in a system 1 , to imple
ment the present methods . Such a unit 101 notably com
prises CPUs and / or GPUs configured for enabling paral
lelization of computerized steps , involved in
embodiments . Yet , the present methods may also involve
virtual machines , e.g. , in the cloud , dedicated to the large
matching computations , if needed .
[0080] The unit 101 depicted in FIG . 18 may be , e.g. , a
general- or specific - purpose computer . In exemplary
embodiments , in terms of hardware architecture , the unit
101 includes at least one processor 105 , and a memory 110
coupled to a memory controller 115. Preferably though ,
several processors (CPUs , and / or GPUs) are involved , to
allow parallelization , as noted above . To that aim , the
processing units may be assigned respective memory con
trollers , as known per se .
[0081] One or more input and / or output (I / O) devices 145 ,
150 , 155 (or peripherals) are communicatively coupled via
a local input / output controller 135. The input / output con
troller 135 can be coupled to or include one or more buses
and a system bus 140 , as known in the art . The input / output
controller 135 may have additional elements , which are
omitted for simplicity , such as controllers , buffers (caches) ,
drivers , repeaters , and receivers , to enable communications .
Further , the local interface may include address , control ,
and / or data connections to enable appropriate communica
tions among the aforementioned components .
[0082] The processor (s) 105 is a hardware device for
executing software , particularly that stored in memory 110 .
The processor (s) 105 can be any custom made or commer
cially available processor (s) , may include one or more
central processing units (CPUs) and / or one or more graphics
processing units (GPUs) , or , still , have an architecture
involving auxiliary processors among several processors
associated with the computer 101. In general , it may involve
any type of semiconductor based microprocessor (in the
form of a microchip or chip set) , or generally any device for
executing software instructions .
[0083] The memory 110 can include any one or combi
nation of volatile memory elements (e.g. , random access
memory) and nonvolatile memory elements . Moreover , the
memory 110 may incorporate electronic , magnetic , optical ,
and / or other types of storage media . Note that the memory
110 can have a distributed architecture , where various com
ponents are situated remote from one another , but can be
accessed by the processor (s) 105 .
[0084] The software in memory 110 may include one or
more separate programs , each of which comprises an
ordered listing of executable instructions for implementing
logical functions . In the example of FIG . 18 , the software in

2. Computerized Data Management System
[0076] Referring now to FIGS . 17 and 18 , another aspect
of the invention is described , which concerns a computer
ized data management system 1. Essentially , this system is
configured , both in terms of hardware and software , to
perform steps of a method such as described above . To that
aim , the system will comprise suitably configured process
ing means , memory and interface means .
[0077] Referring first to FIG . 17 , the system 1 may oth
erwise be configured to train S50 a machine - learning model ,
e.g. , implemented by a neural network 2 , so as to learn
parameters (e.g. , a and B) , as involved in embodiments
discussed earlier . Once properly trained , the model may
perform inferences as to optimal parameters a and ß based
on inputs . In a possible scenario , data points are collected
from the query entities processed for linkage , according to

US 2019/0354596 A1 Nov. 21 , 2019
8

the memory 110 includes computerized methods , forming
part of all of methods described herein in accordance with
exemplary embodiments and , in particular , a suitable oper
ating system (OS) 111. The OS 111 essentially controls the
execution of other computer programs and provides sched
uling , input - output control , file and data management ,
memory management , and communication control and
related services .
[0085] The methods described herein may be in the form
of a source program , executable program (object code) ,
script , or any other entity comprising a set of instructions to
be performed . When in a source program form , then the
program needs to be translated via a compiler , assembler ,
interpreter , or the like , as known per se , which may or may
not be included within the memory 110 , so as to operate
properly in connection with the OS 111. Furthermore , the
methods can be written as an object oriented programming
language , which has classes of data and methods , or a
procedure programming language , which has routines , sub
routines , and / or functions .
[0086] Possibly , a conventional keyboard and mouse can
be coupled to the input / output controller 135. Other I / O
devices 140-155 may be included . The computerized unit
101 can further include a display controller 125 coupled to
a display 130. In exemplary embodiments , the computerized
unit 101 can further include a network interface or trans
ceiver 160 for coupling to a network , to enable , in turn , data
communication to / from other , external components .
[0087] The network transmits and receives data between
the unit 101 and external devices , e.g. , physical databases
10 , 20 as depicted in FIGS . 1 , 2. The network is possibly
implemented in a wireless fashion , e.g. , using wireless
protocols and technologies , such as Wifi , WiMax , etc. The
network may be a fixed wireless network , a wireless local
area network (LAN) , a wireless wide area network (WAN)
a personal area network (PAN) , a virtual private network
(VPN) , intranet or other suitable network system and
includes equipment for receiving and transmitting signals .
[0088] The network can also be an IP - based network for
communication between the unit 101 and any external
server , client and the like via a broadband connection . In
exemplary embodiments , network can be a managed IP
network administered by a service provider . Besides , the
network can be a packet - switched network such as a LAN ,
WAN , Internet network , an Internet of things network , etc.
[0089] If the unit 101 is a PC , workstation , intelligent
device or the like , the software in the memory 110 may
further include a basic input output system (BIOS) . The
BIOS is stored in ROM so that the BIOS can be executed
when the computer 101 is activated . When the unit 101 is in
operation , the processor (s) 105 is (are) configured to execute
software stored within the memory 110 , to communicate
data to and from the memory 110 , and to generally control
operations of the computer 101 pursuant to the software .
[0090] The methods described herein and the OS 111 , in
whole or in part are read by the processor (s) 105 , typically
buffered within the processor (s) 105 , and then executed .
When the methods described herein are implemented in
software , the methods can be stored on any computer
readable medium , such as storage 120 , for use by or in
connection with any computer related system or method .

3. Computer Program Products
[0091] According to a final aspect , the invention can be
embodied as a computer program product for linking records
of a given query entity to records of a master database . The
computer program product comprises a computer readable
storage medium having program instructions embodied
therewith , where the program instructions are executable by
one or more processors , to cause to take steps according to
the present methods .
[0092] The present invention may thus be embodied as a
computerized hardware system , a method , and / or a com
puter program product at any possible technical detail level
of integration . The computer program product may include
a computer readable storage medium (or media) having
computer readable program instructions thereon for causing
a processor to carry out aspects of the present invention .
[0093] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e.g. , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0094) Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0095] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more
programming languages , including an object oriented pro

US 2019/0354596 A1 Nov. 21 , 2019
9

gramming language such as Smalltalk , C ++ , or the like , and
procedural programming languages , such as the C program
ming language or similar programming languages . The
computer readable program instructions may execute
entirely on the user's computer , partly on the user's com
puter , as a stand - alone software package , partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user's computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0096] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0097] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0098] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0099] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the

functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the
reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
[0100] While the present invention has been described
with reference to a limited number of embodiments , variants
and the accompanying drawings , it will be understood by
those skilled in the art that various changes may be made and
equivalents may be substituted without departing from the
scope of the present invention . In particular , a feature
(device - like or method - like) recited in a given embodiment ,
variant or shown in a drawing may be combined with or
replace another feature in another embodiment , variant or
drawing , without departing from the scope of the present
invention . Various combinations of the features described in
respect of any of the above embodiments or variants may
accordingly be contemplated , that remain within the scope
of the appended claims . In addition , many minor modifica
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope . Therefore , it is intended that the present
invention not be limited to the particular embodiments
disclosed , but that the present invention will include all
embodiments falling within the scope of the appended
claims . In addition , many other variants than explicitly
touched above can be contemplated .
What is claimed is :
1. A computer - implemented method of record linkage , the

method comprising :
accessing a given query entity of a query database and a

set of reference entities from a master database ,
in each entity accessed corresponds to an entry in

a respective database , which entry is mapped to a set of
words decomposed into tokens ;

for each reference entity of said set of reference entities
from the master database :
identifying , for each token of the given query entity , a

closest token in said each reference entity according
to a string metric , whereby closest tokens identified
are respectively associated with highest scores of
similarity with the tokens of the query entity ; and

computing an entity similarity score between said given
query entity and said each reference entity , based on
said highest scores of similarity ,

identifying a reference entity of the master database that
is closest to said given query entity , based on the entity
similarity score computed for each of said reference
entities ; and

based on the closest reference entity identified , linking
records of the given query entity to records of the
master database .

2. The method according to claim 1 , wherein
identifying said closest tokens comprises :

computing token similarity scores according to said
string metric , whereby the computed scores depend ,

US 2019/0354596 A1 Nov. 21 , 2019
10

each , on a distance between a respective token from
the given query entity and a token from the master
database ; and

identifying , for each token of the given query entity ,
said closest token in said each reference entity based
on the scores computed with respect to tokens of said
each reference entity .

3. The method according to claim 1 , wherein
the string metric used to identify said closest tokens is a

Levenshtein distance metric .
4. The method according to claim 3 , wherein
computing the entity similarity score is performed by
summing highest scores of similarity associated with
the closest tokens identified in said each reference
entity .

5. The method according to claim 4 , wherein
the closest tokens identified in said each reference entity

comprises a first type of tokens , which are alphanu
meric tokens , and a second type of tokens , which are
non - alphanumeric tokens , and

the highest scores of similarity summed are further
weighted differently , depending on whether they are
associated to closest tokens of the first type or of the
second type .

6. The method according to claim 5 , wherein
the method further comprises training a machine - learning
model for it to learn relative weight to use for weighting
said highest scores of similarity , based on successive
query entities processed to link records of such query
entities to records of the master database .

7. The method according to claim 5 , wherein
the entity similarity score LT is computed according to :

11. The method according to claim 10 , wherein
decomposing the textual description into tokens com

prises concatenating some of the consecutive words of
the textual description to form corresponding tokens .

12. The method according to claim 10 , wherein
the consecutive words concatenated include , on the one

hand , a string of characters , and on the other hand , a string of digits , thereby resulting in alphanumeric
tokens .

13. The method according to claim 1 , wherein the method
further comprises , prior to accessing the given query entity
and the reference entities :
decomposing the query database into query entities ; and
selecting said given query entity among said query enti

ties .
14. The method according to claim 1 , wherein the method

further comprises , prior to accessing the given query entity
and the reference entities :

grouping similar reference entities of the master database
to form said set of reference entities .

15. The method according to claim 14 , wherein grouping
said similar reference entities comprises :

clustering reference entities of the master database to
obtain clusters of similar reference entities ; and

selecting reference entities from each of the clusters
obtained to form said set of reference entities , whereby
said set of reference entities comprises several refer
ence entities , each selected from a respective one of the
clusters obtained .

16. The method according to claim 14 , wherein grouping
said similar reference entities comprises :

identifying , among query entities that have previously
been processed similarly as said given query entity , a
set of query entities that are most similar to said given
query entity ; and

identifying reference entities of the master database that
have previously been found to be closest to said set of
most similar query entities identified , to form said set
of reference entities .

17. The method according to claim 1 , wherein
each entity accessed corresponds to an entry mapped to a

set of words decomposed into tokens , where each of the
tokens includes a string that comprises at least one
word from said set of words .

18. A computerized data management system , configured
for :

accessing a given query entity of a query database and a
set of reference entities from a master database ,
wherein each entity accessed corresponds to an entry in
a respective database , which entry is mapped to a set of
words decomposed into tokens ;

for each reference entity of said set of reference entities
from the master database :
identifying , for each token of the given query entity , a

closest token in said each reference entity according
to a string metric , whereby closest tokens identified
are respectively associated with highest scores of
similarity with the tokens of the query entity ; and

computing an entity similarity score between said given
query entity and said each reference entity , based on
said highest scores of similarity ,

identifying a reference entity of the master database that
is closest to said given query entity , based on the entity
similarity score computed for each of said reference
entities ; and

LT =
a • s (ti) . 1 (t ; E A.) + s (t ;) . 1 (1 ; EA)
L - 1 2.1 (; E A ,) + 1 (t ; E A)

where :
a is a weight assigned to highest scores s (t ;) for
non - alphanumeric tokens te ? , whereas highest
scores s (t ;) of alphanumeric tokens tEA are
assigned a weight equal to 1 ; and

1 (t ; EX) is an indicator function , outputting 1 , if t ;
X , and 0 otherwise .

8. The method according to claim 1 , wherein
records of the given query entity are linked to records of

the master database only if the entity similarity score
computed for the reference entity identified as closest
to said given query entity is larger than a given thresh
old ß .

9. The method according to claim 8 , wherein
the method further comprises training a machine learning
model for it to learn said given threshold B , based on
successive query entities processed to link records of
such query entities to records of the master database .

10. The method according to claim 1 , wherein
the given query entity accessed corresponds to an entry of

the query database , which entry is mapped to a textual
description and accessing said given query entity fur
ther comprises decomposing the textual description
into tokens .

US 2019/0354596 A1 Nov. 21 , 2019
11

based on the closest reference entity identified , linking
records of the given query entity to records of the
master database .

19. A computer program product for linking records of a
given query entity to records of a master database , the
computer program product comprising a computer readable
storage medium having program instructions embodied
therewith , the program instructions executable by one or
more processors , to cause to :

access a given query entity of a query database and a set
of reference entities from a master database , wherein
each entity accessed corresponds to an entry in a
respective database , which entry is mapped to a set of
words decomposed into tokens ;

for each reference entity of said set of reference entities
from the master database :
identify , for each token of the given query entity , a

closest token in said each reference entity according
to a string metric , whereby closest tokens identified
are respectively associated with highest scores of
similarity with the tokens of the query entity ; and

compute an entity similarity score between said given
query entity and said each reference entity , based on
said highest scores of similarity ,

identify a reference entity of the master database that is
closest to said given query entity , based on the entity
similarity score computed for each of said reference
entities ; and

based on the closest reference entity identified , link
records of the given query entity to records of the
master database .

