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SIMILARITY MATCHING SYSTEMS AND 
METHODS FOR RECORD LINKAGE 

BACKGROUND 

[ 0001 ] The invention relates in general to the field of 
computer - implemented methods and systems for record 
linkage . In particular , it is directed to computerized methods 
that rely on similarity matching of tokenized database enti 
ties to perform automatic record linkage . 
[ 0002 ] Data has become a precious source for enterprise 
decision making . For instance , in the information technol 
ogy ( IT ) industry , strategical marketing decisions are often 
made based on information regarding products installed at 
customers ' sites and products already sold to such custom 
ers . Such information is available through internal and 
commercial datasets which are often scattered over multiple 
computers or storage systems . In addition , the relevant 
information is often available through heterogeneous or 
dissimilar representations . In such cases , one first needs to 
link items present in the various datasets , in order to be able 
to get full insights from such items . 
[ 0003 ] Of particular interest is the record linkage of data 
entities , such as descriptions of products , services and 
company names . Different and yet related descriptions of 
such items is often found in several datasets . Differences 
across the item representations may include different for 
mats , synonyms , abbreviations , acronyms and also typo 
graphical errors . The challenge is , under such circum 
stances , to be able to match descriptions corresponding to a 
same item . 
[ 0004 ] Assume that a dataset of entities are available , 
which together make up a master database . The objective is 
to match records of a given query database ( i.e. , another , 
similar dataset ) against the master database . One way to 
achieve this is to find the best matching catalog entry for 
each item from the query database . Now , both the query and 
master databases are results of human work . E.g. , their 
vocabulary is likely not standardized , and the entity descrip 
tions may contain typos , omissions , and other spelling 
variations . 
[ 0005 ] To find the best matches , a quantitative similarity 
measure is needed , to handle inconsistencies such as men 
tioned above . Assuming that such a similarity measure is 
available , matching query records against a master database 
likely implies to compare a large number of items for 
similarity . Notwithstanding , the amount of training data may 
be limited , which prohibits direct applications of advanced 
machine learning and probabilistic record linkage tech 
niques . In such a context , another type of automatic record 
linkage technique is needed , which ideally should be fast 
and efficient . 
[ 0006 ] State - of - the - art methods of record linkage notably 
include fuzzy or probabilistic record linkage , based on 
machine learning and deep learning models . However , such 
techniques cannot be used in a context where the amount of 
training data is limited , as noted above . Thus , other methods 
need be devised , which allow for certain statistical infer 

values indicate higher similarity . String similarity metrics 
can be roughly classified into edit - distance based metrics 
and token - based metrics . 
[ 0008 ] Edit - based measures express similarity by counting 
the number of primitive operations required to convert one 
string into another , i.e. , insertion , deletion , substitution and 
transposition . Different subsets of such operations may 
nevertheless be considered , depending on the algorithm 
variant adopted . For example , the Jaro similarity measure 
[ 1 ] relies on the number of matching characters and neces 
sary transpositions , whereas the Levenshtein similarity mea 
sure [ 2 , 3 ] counts the number of insertion , deletion , and 
substitution operations required . Usually a unit cost is 
assigned to a single operation and the sum of all costs is 
returned as the distance between strings . A variant is the 
Damerau - Levenshtein distance . Different cost values can be 
assigned to individual operations leading to the weighted 
Levenshtein distance . Any distance accordingly computed 
can be turned into a quantity that measures the similarity . 
For example , a similarity measure s can be expressed as the 
opposite of a distance d ( s = -d ) or as an affine function of d , 
whose coefficient is the reciprocal of the maximal length of 
the two strings w1 , W2 compared , i.e. , s = 1 - d / Max ( W1 , W2 ) . 
[ 0009 ] Token - based distance measures consider two 
strings as multisets of characters . For example , the so - called 
WHIRL similarity [ 4 , 5 ] measures the distance between two 
strings in terms of cosine similarity of weighted TF - IDF 
vectors of words , where TF - IDF stands for “ frequency 
inverse document frequency ” , which is a statistical measure 
for the importance of terms in a set of documents . As another 
example , methods based on so - called q - grams [ 5 ] , which 
involve the TF - IDF too , divide a string into q - grams instead 
of words and computes the weight of each word according 
to its TF - IDF . The distance between two strings is computed 
as the cosine similarity of the weighted words . 
[ 0010 ] The following papers , which illustrate the back 
ground art , address concepts that are also used in this 
document : 
[ 0011 ] [ 1 ] Matthew A. Jaro . 1989. Advances in Record 
Linkage Methodology as Applied to Matching the 1985 
Census of Tampa , Fla . J. Amer . Statist . Assoc . 84 , 406 
( 1989 ) , 414-420 . 

[ 0012 ] [ 2 ] V. I. Levenshtein . 1966. Binary Codes Capable 
of Correcting Deletions , Insertions and Reversals . Soviet 
Physics Doklady 10 , 8 ( February 1966 ) , 707-710 . 

[ 0013 ] [ 3 ] Alexandr Andoni , Robert Krauthgamer , and 
Krzysztof Onak . 2010. Polylogarith - mic Approximation 
for Edit Distance and the Asymmetric Query Complexity . 
( 2010 ) . 

[ 0014 ] [ 4 ] William W Cohen . 1998. Integration of hetero 
geneous databases without com - mon domains using que 
ries based on textual similarity . In ACM SIGMOD 
Record , Vol . 27. ACM , 201-212 . 

[ 0015 ] [ 5 ] Ahmed K Elmagarmid , Panagiotis G Ipeirotis , 
and Vassilios S Verykios . 2007. Duplicate record detec 
tion : A survey . IEEE Transactions on knowledge and data 
engineering 19 , 1 ( 2007 ) , 1-16 . 

SUMMARY ence . 

[ 0007 ] A number of algorithms are available , which mea 
sure the distance between strings for approximate matching . 
They implement a distance metric or , closely related , a 
similarity score that maps two input strings to a number . 
Smaller distance or , equivalently , higher similarity score 

[ 0016 ] According to a first aspect , the present invention is 
embodied as a computer - implemented method of record 
linkage . First , a given query entity of a query database and 
a set of reference entities from a master database are 
accessed , wherein each entity accessed corresponds to an 
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reference entities in the reference database are clustered , 
prior to attempting to match a query entity , to accelerate the 
linkage ; 
[ 0025 ] FIG . 17 is a diagram that schematically represents 
a data management system , involving a machine learning 
subsystem to learn parameters involved in methods for 
linking records according to embodiments ; and 
[ 0026 ] FIG . 18 schematically represents a general purpose 
computerized unit , suited for implementing method steps as 
involved in embodiments of the invention . 
[ 0027 ] The accompanying drawings show simplified rep 
resentations of devices or parts thereof , as involved in 
embodiments . Similar or functionally similar elements in the 
figures have been allocated the same numeral references , 
unless otherwise indicated . 

entry in a respective database , which entry is mapped to a set 
of words that are decomposed into tokens . Next , for each 
token of the given query entity , a closest token is identified 
in each reference entity of the set of reference entities 
considered . This is achieved thanks to a given string metric . 
That is , a number of closest tokens are identified in said each 
reference entity , which are respectively associated with 
highest scores of similarity ( or , equivalently , smallest dis 
tances ) between tokens of the query entity and tokens of said 
each reference entity . Then , an entity similarity score 
between said given query entity and said each reference 
entity is computed , based on said highest scores of similar 
ity . A reference entity of the master database is subsequently 
identified , based on the entity similarity score computed for 
each of the reference entities , which is closest to said given 
query entity . Finally , records of the given query entity are 
linked to records of the master database , based on the closest 
reference entity identified . A similar process can be carried 
out for a number of query entities , e.g. , as obtained by 
decomposing a query database . 
[ 0017 ] According to another aspect , the invention is 
embodied as a computerized data management system that 
is specifically configured to implement a method such as 
described above . 
[ 0018 ] A final aspect of the invention concerns a computer 
program product for linking records of a given query entity 
to records of a master database . The computer program 
product comprises a computer readable storage medium 
having program instructions embodied therewith , where the 
program instructions are executable by one or more proces 
sors , to cause to take steps according to the above method . 
[ 0019 ] Computerized systems , methods , and computer 
program products embodying the present invention will now 
be described , by way of non - limiting examples , and in 
reference to the accompanying drawings . 

DETAILED DESCRIPTION 

[ 0028 ] The following description is structured as follows . 
First , computerized methods of record linkage are described 
( sect . 1 ) . The next sections concern related computerized 
systems and computer program products ( sect . 2 and 3 ) . 

1. Computerized Methods of Record Linkage 

1.1 High - Level Description of the Method and Variants 
Thereto 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0020 ] The accompanying figures , where like reference 
numerals refer to identical or functionally similar elements , 
and which together with the detailed description below are 
incorporated in and form part of the present specification , 
serve to further illustrate various embodiments and to 
explain various principles and advantages all in accordance 
with the present disclosure , in which : 
[ 0021 ] FIGS . 1-13 illustrate , step - by - step , a method for 
linking records from distinct databases , wherein query enti 
ties from a query database are matched to closest reference 
entities from a master database , based on similarity scores 
computed from closest distances between tokens of such 
entities , as in embodiments . Use is made of purposely 
simple examples of database entries , as well as tables and 
matrices , which illustrate successive operations performed 
according to this method ; 
[ 0022 ] FIG . 14 is a flowchart illustrating high - level steps 
of such a method , as in embodiments ; 
[ 0023 ] FIG . 15 is a flowchart capturing high - level steps of 
a variant to the method of FIG . 14 , wherein previously 
processed query entities are used to restrict the set of 
potential matches in the reference database and thereby 
accelerate the linkage . In addition , FIG . 15 show detailed 
steps for pre - processing the query and reference databases , 
as involved in embodiments ; 
[ 0024 ] FIG . 16 is a flowchart illustrating high - level steps 
of another variant to the method of FIG . 14 , wherein 

[ 0029 ] In reference to FIGS . 1-16 , an aspect of the inven 
tion is first described , which concerns a computer - imple 
mented method of record linkage . The context is assumed is 
to be the same as the context discussed in the background 
section . On the one hand , a set of entities are available , 
which together form a master database 10. There , the 
objective is to match records of a given query database 20 
against records from the master database 10. To that aim , 
one needs to find the best - matching catalog entry for each 
item from the query database 20 , which requires a quanti 
tative similarity measure that makes it possible to cope with 
inconsistencies between item descriptions in data entities 
from the two databases 10 , 20 . 
[ 0030 ] Thus , two databases 10 , 20 are available , which 
consist of a reference database 10 ( likely the largest data 
base ) and a query database ( likely the smallest ) , as depicted 
in FIGS . 1 , 2. In fact , and notwithstanding depictions used 
in FIGS . 1 , 2 , the respective datasets may be stored on a 
single storage unit , or on more than two storage units . That 
is , a “ database ” as understood herein must be construed as 
a more or less structured set of data ( possibly available 
through different file formats ) , and held in a computerized 
system , which may involve one or more storage units , on 
which such a set of data is stored . Basically , the aim is to link 
records from the query database 20 to records from the 
reference database 10. To achieve this , the method proposed 
compares items from the query database 20 with items from 
the master database 10. Yet , because such comparisons may 
easily become intractable , some simplification is required , 
the key being to find a sound level of simplification , so as not 
to compromise the subsequent data linkage . This is achieved 
as described below . This method is first described in refer 
ence to the flowchart of FIG . 14 and with respect to a given 
query entity , whose records are to be linked to records of a 
most similar entity in the reference database . The method is 
then exemplified , step - by - step , in reference to FIGS . 1-13 . 
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[ 0031 ] First , referring to FIG . 14 , a given query entity 23 , 
26 from the query database 20 and a set of reference entities 
16 from a master database 10 need be accessed at some 
point . Providing access to such entities may possibly require 
some data pre - processing , as generally denoted by refer 
ences S10 , S20 in FIGS . 14-16 . Such data pre - processing 
may in fact involve a number of pre - processing steps , 
denoted by references S11 - S18 , S21 - S28 and later described 
in reference to FIG . 15 . 
[ 0032 ] Each entity 16 , 26 accessed at steps S18 , S28 
corresponds to an entry 13 , 23 in a respective database 10 , 
20 , which entry is mapped to a set of words . Initially , such 
sets of words may typically be sentences , or any form of 
descriptions 14 , 24 in a natural language . Yet , at some point , 
such descriptions are decomposed into tokens 16 , 26 . 
[ 0033 ] Assuming that tokenized forms of the considered 
entities are available , some comparison is carried out for 
each reference entity of the considered set of entities 16 from 
the master database 10 , whereby a given query entity is 
compared to each reference entity . First , and for each token 
of the given query entity 23 , 26 considered , a closest token 
35 is identified S32 - S35 in said each reference entity 16 , 
according to any suited string metric . That is , scores of 
similarity 34 can be associated to pairs of tokens in each 
entity pair considered ; the closest tokens 35 that are even 
tually identified S35 in a reference entity are those that are 
respectively associated with the highest scores of similarity 
34 with the tokens from the query entity 23 , 26. That is , for 
each token from the query , a closest token is identified in the 
reference entity that is being compared to the query entity . 
[ 0034 ] Then , an entity similarity score 36 , 360 , 36b is 
computed S36 , S360 , S36b , which measures the similarity 
between said given query entity 23 , 26 and each of the 
compared reference entities 16. The entity similarity scores 
are computed based on the highest scores of similarity 34 
found for each token from the query entity . 
[ 0035 ] Next , a reference entity is identified S38 as being 
the closest to said given query entity 23 , 26 , based on the 
entity similarity scores 36 , 36a , 36b computed for each of 
said reference entities 16. Finally , records 24 of the given 
query entity can be linked to records 14 of the master 
database 10 , based on the closest reference entity identified 
for that query entity . 
[ 0036 ] Token - based distances as used herein imply a 
tokenization S16 , S26 , whereby a string sequence is split 
into words and / or other symbols ( e.g. , concatenated words ) , 
using such separators as whitespace , line break , and / or 
punctuation characters . Tokens provide a suited granularity 
for the problem at hand , whereby comparisons are initially 
performed at the level of tokens . Most similar tokens are 
those that have highest scores of similarity with tokens from 
the query entity 26 or , equivalently , those that are at the 
smallest distance from such tokens . Note , although similar 
ity measures and distances will typically vary oppositely or 
inversely ( a smaller distance yields a larger similarity ) , any 
form of similarity measures is , in some way , an appreciation 
of a distance between two items . Thus , similarity measures 
and distances are generally considered to be equivalents for 
the purpose of implementing this invention , unless other 
wise stated , e.g. , as in embodiments specifically relying on 
specific similarity definitions , which are described later . 
[ 0037 ] The token comparisons S32 may be performed 
based on a vocabulary of unique tokens of the master 
database 10 , in order to reduce the number of such com 

parisons . Preferably though , the token comparisons are 
performed for each reference entity 16 ( one after the other ) 
and for all tokens therefrom , using mere loops , as assumed 
in FIG . 14. Reasons for doing so is that the descriptions 14 , 
24 shall , once tokenized , often include distinctive ( and 
therefore unique ) words . Also , the number of entities may be 
very large , and typically much larger than the average 
number of words per entity . In such a case , maintaining a 
vocabulary of unique tokens may be computationally 
demanding , especially where frequent updates of the mater 
database are required . Thus , it may finally be easier to 
compute distance matrices between all token pairs for each 
pair of entities considered . In all cases , however , the entity 
similarities can be computed S36 based on the sole highest 
similarity scores obtained S34 , S35 for tokens from the 
query entities , which drastically reduces the complexity of 
the entity comparison S36 - S38 . 
[ 0038 ] It remains that , if ( n ) is the average number of 
tokens per entity and N is the number of reference entities 
that need be compared to a query entity , the complexity of 
the first operations S32 scales as N ( n ) 2 if performed for 
each of the ( n ) tokens ( on average ) of the query entity and 
each of the ( n ) tokens ( on average ) of the reference entities , 
whereas it would scale as ( n ) nu , if a vocabulary of n , 
unique words is maintained . As n , should be much less than 
N ( n ) in practice , the use of a vocabulary should in prin 
ciple be more efficient . However , such a benefit becomes 
questionable when the number of unique , distinctive words 
become proportionally more important , as in databases of 
company names , commercial products and services . All the 
more , a vocabulary of unique tokens need be updated after 
each record linkage operation and additional operations are 
subsequently required at step S36 , in order to identify which 
score is associated with which token of each of the N 
reference entities . Thus , mere loops may suffice to perform 
the token comparisons , as assumed in FIG . 14 , though 
parallelization may be contemplated , in variants . 
[ 0039 ] In all cases , the tokenized approach chosen here for 
entity comparisons can be made fully or ( at least partly ) 
independent from the token order in each entity . The use of 
a similarity measure allows fuzzy matching of tokens , which 
is resilient to typos and other inconsistencies . Another 
advantage compared to prior art methods is that present 
methods do not require the words to be split into q - grams , 
so that the word semantics ( which can be very strong in 
entity descriptions as considered here ) does not get lost . 
Preferably , the Levenshtein similarity measure is used to 
capture small inconsistencies between tokens , as it allows 
typos and other small inconsistencies to be taken into 
account . In addition , fast implementations of the Leven 
shtein similarity algorithm are available , which may , in 
some cases , be computed in near - linear time [ 3 ] . Thus , 
variants to the Levenshtein similarity measure can be con 
templated . More generally though , any suitable similarity 
measure can be envisaged . 
[ 0040 ] Assume , that the databases 10 , 20 already include 
data entities that are in a suitable shape for comparison 
purposes , which might require some pre - processing , as later 
described in reference to FIGS . 1 , 2. For example , FIGS . 3-6 
depict tables 12 , 22 , which aggregate several entities 13 , 14 
and 23 , 24 from the databases 10 , 20. Note , tables are used 
for the sake of illustration only : the actual entities 13 , 14 and 
23 , 24 may actually be internally stored under any suited 
format . Initially , such entities correspond to respective 
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entries 13 , 23 , which may be labelled ( e.g. , “ POWER7 ” , 
" POWER8 ” , etc. , as in entities obtained from the master 
database 10 ) , or not ( as in entities 23 , 24 obtained from the 
query database ) . Such entries are mapped to respective sets 
of words 14 , 24 , which initially may be mere descriptions of 
the corresponding entry labels . E.g. , “ POWER7 refers to 
superscalar symmetric multiprocessors based on the Power 
Architecture and released in 2010 ” . Next , such descriptions 
14 , 24 are tokenized ( and possibly cleaned to get rid of stop 
words and the likes ) during respective steps S16 , S26 , which 
are likely performed at different times , for reasons discussed 
later . The tokenization yields , e.g. , vector representations 16 , 
26 of words as depicted in FIGS . 4 , 6 with respect to entities 
from the two databases 10 , 20 . 
[ 0041 ] Next , referring back to FIG . 14 , steps S32 - S35 aim 
at identifying closest tokens 35 in the master database and , 
this , for each of the tokens of the query entity considered . 
Such steps may be carried out by first computing S32 all 
scores 32 of similarity between tokens of the query entity 
and tokens from the master database , as noted earlier . E.g. , 
such scores can be computed for each pair of tokens and for 
each pair of entities considered . For example , assume that 
two query entities 91 , 42 are to be successively processed 
( which respectively include 4 and 5 tokens , after tokeniza 
tion ) for comparison against three reference entities ?1 , M2 , 
Uz , which include 8 tokens each , after tokenization , as in the 
example of FIGS . 7-12 . In this example , the three reference 
entities M1 , M2 , Uz form a reduced set of reference entities that 
are considered for comparison with 91 and 92 ( considering 
one query entity q , at a time ) . This set may well have been 
inferred based on a history of previous queries or by 
clustering , as later described in reference to FIGS . 15 and 
16 . 
[ 0042 ] In this example , the comparisons performed at step 
S32 give rise to 2x3 = 6 distance matrices . The upper matri 
ces in FIG . 7 comprise , each , 4x8 distances , whereas the 
lower matrices comprise , each , 5x8 distances , owing to the 
numbers of tokens in each entity considered . Such distances 
are computed according to a chosen string metric ( here the 
Levenshtein metric ) , and the scores 32 computed so far 
reflect pair distances 32 between respective tokens from the 
query entities 91 , 92 from a query database 20 and tokens 
from the entities Un - Uz from the master database 10 . 
[ 0043 ] Then , closest tokens 35 can easily be identified 
S34 , S35 for each token of the given query entities 41 , 42 , in 
each of the reference entities U1 - Hz , based on the distances 
32. In that respect , FIG . 8 shows the minimal distances 34 
( thus corresponding to highest scores ) to each query token , 
which correspond , each , to minima from each matrix row of 
FIG . 7. The corresponding tokens from the reference entities 
U1 - Uz are identified in FIG . 9 , which depict positions ( indi 
ces ) of such tokens . Note , although distances are reported in 
FIGS . 7 , 8 and 10 , for the intelligibility of the description of 
the present examples , similarity scores ( expressed as , e.g. , 
opposite of distances or reciprocal of translated distances ) 
could have used as well . 
[ 0044 ] When degenerated distance minima ( or score 
maxima ) are found , any corresponding reference token 
could be selected , which has little impact in practice . For 
example , consider the q? - 4 , matrix of FIG . 7 : here the 
minimal pair distance found for the first token of q? ( upper 
row of the matrix ) is 0 , which value is accordingly identified 
and reported in the 9. - u , vector of FIG . 8. The value is 
indeed ( as it measures the distance between identical tokens 

( “ POWER7 ” ) in that case . And the corresponding reference 
token is indeed the first one of the upper word vector of FIG . 
4 , whence the value 1 reported in the first vector element of 
the q? - u , vector of FIG . 9. However , the closest distances 
found between the third token of q . ( i.e. , “ instructions ” ) and 
any token of u , is 10 , which minimal value is degenerated 
because the word “ instructions ” is as close from “ supersca 
lar ” , “ symmetric " , or " multiprocessors ” , according to the 
standard Levenshtein metric ( i.e. , the number of one - ele 
ment deletions , insertions , and substitutions required to 
transform the first word into the second ) . There , it does not 
matter which corresponding token of u , is identified as the 
closest token ; the token position reported in the 41-4 , vector 
of FIG . 9 corresponds to the position ( 2 ) of the second token 
of u , in that case , i.e. , the first token among the three that 
gives the distance of 10 . 
[ 0045 ] Next , further referring to FIGS . 10-12 , the entity 
similarity score 36 , 36a , 36b is preferably performed by 
summing S36 , S360 , S36b highest scores of similarity 34 
associated with the closest tokens 35 identified at step S35 
( FIG . 9 ) in each of the reference entities 16 considered . 
Importantly , only the highest scores ( or smallest distances ) 
obtained for each of the query tokens are considered to 
compute the entity similarities . In the example of FIG . 10 , 
the smallest distances obtained for each token of q? , 42 ( FIG . 
9 ) are simply summed , yielding a cumulated distance matrix 
that already designates the reference entity uy as closest 
entity to q? , in accordance with expectations from FIGS . 4 , 
6. Note , the sum may possibly be normalized in practice 
( e.g. , by the sum of tokens in the respective query entities ) , 
contrary to the calculation used for FIG . 10. Now , FIG . 10 
also shows that entities uz and uz are found at an equal 
overall distance from 42 , when simply summing the smallest 
distances obtained for each token of 92. This is due to some 
compensation . Therefore , a similarity measure s is prefer 
ably used , instead of a mere cumulated distance , which can 
for instance be expressed as the reciprocal of a translated 
distance d . E.g. , s = 1 / ( 1 + d " ) , where k is some integer ( for 
example k = 1 , as used to obtain the values reported in FIG . 
11 ) . Such a measure favors exact matches . Accordingly , uz 
and uz are now found to be the closest entities from q? and 
42 , respectively . 
[ 0046 ] Comments are in order . First , different expressions 
of the similarity measure s could be used , instead of s = 1 / 
( 1 + d " ) . For example , one may use the expression s = ( 1 + d ) -K , 
where k is some positive integer ( k > 1 ) . As another example , 
one may use the expression s = 1 - d / Max ( W1 , W2 ) , as noted 
earlier . Such variants to the expression of the similarity 
measure do , qualitatively , not impact the results , inasmuch 
as they all lead to the same conclusion , i.e. , My and uz are the 
closest entities from q? and 92 , respectively . Minor differ 
ences may , however , be observed . For example , depending 
on the actual expression used , the similarity between q , and 
y may be found to be larger than the similarity between 92 

and u2 , contrary to the results obtained with s = 1 / ( 1 + d ) , as 
used to compute the results shown in FIGS . 11 and 12 . 
Finally , a threshold coefficient ß may be used , to discard 
potential matches , as depicted in FIGS . 11 and 12. This point 
is discussed later in detail . 
( 0047 ] As seen in FIG . 4 , two types of tokens may be 
considered , i.e. , alphanumeric tokens vs. non - alphanumeric 
tokens . As it may be realized , alphanumeric tokens ( i.e. , 
containing both alphabetical and numerical strings ) will be 
much more distinctive in practice , whence the importance of 
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such tokens . The latter could therefore be given more weight 
in the computation of entity similarity scores , as in step 
S36b , FIG . 12. The other type ( " non - alphanumerical ” ) of 
tokens may for instance be defined as tokens that are free of 
characters ( e.g. , letters ) and / or digits . E.g. , these may for 
example be all tokens that are free of any digit , as assumed 
in FIG . 12. In that case , the highest scores of similarity 34 
( as obtained after step S34 ) may further be weighted S36b 
differently , depending on whether they are associated to 
closest tokens 35 of the first type or of the second type , as 
in FIG . 12 , where weights of 1 are assigned to scores of 
alphanumeric tokens , whereas scores for query tokens free 
of digits receive weights of 0.5 only , in this example . Again , 
for the process of decision making whether a match has 
occurred or not , a decision threshold ß could be used . 
[ 0048 ] More explicitly , the entity similarity scores LT may 
advantageously be computed S36b , for any two entities , 
according to : 

LT = • s ( t ; ) . 1 ( 1 € A , ) + s ( ti ) . 1 ( 1 € A ) 
XP - 1 Q. 1 ( 1 ; E A , ) + 1 ( t ; E A ) 

where a is the weight assigned to the highest scores s ( t :) 
retained for non - alphanumeric tokens , i.e. , te ? , wherein , 
e.g. , AE ( 0,1 ] . On the contrary , highest scores s ( t ; ) retained 
for alphanumeric tokens te A are assigned a weight equal 
to 1. Use was further made of the indicator function 1 ( t , E 
X ) , which function outputs 1 if t ; EX and 0 otherwise . 

[ 0049 ] Referring now to FIG . 17 : in embodiments , a 
machine - learning model 2 may further be trained S50 for it 
to learn optimal values for a or , equivalently , the relative 
weight a : 1 as used to weight the highest scores of similarity 
34 summed at step S36b . Concurrently , the same ( or a 
distinct ) model 2 may be used to learn optimal values of the 
threshold parameter B. Learning can for instance be 
achieved based on successive query entities that are pro 
cessed S32 - S38 to link records 24 associated to such query 
entities to records 14 of the master database 10. E.g. , a 
supervised training S50 is preferably relied upon . This is 
discussed later in detail . 
[ 0050 ] Assuming that a threshold parameter ß is available , 
records 24 of a given query entity 23 , 26 can eventually be 
decided to be linked to records 14 of the master database 10 
only if the entity similarity score found S38 for the closest 
reference entity is larger than this parameter B , as high 
lighted in FIG . 11 or 12. For example , assuming that an 
optimal threshold was found , which is equal to 1.1 , only the 
entity similarity scores obtained , which exceed this value , 
could be retained as effective matches , whereas other entities 
would be discarded . Similarly , a threshold value of ß = 1.0 
would , in the example of FIG . 12 , immediately discard 
entities uz and uz as potential matches . This also means that 
no match may possibly be found , which would eventually 
lead to create a new , independent entry in the master 
database ( without any linkage ) , upon integrating records 
corresponding to the queries processed . In other cases , 
several matches may possibly be found , this possibly caus 
ing multiple record linkages . 
[ 0051 ] When an entity ( e.g. , u , ) is retained as a match ( as 
assumed in FIGS . 11 , 12 ) , then records associated to the 
queries q? , 42 can be accordingly linked to an entry of the 

matching entity . For example , in FIG . 13 , a match is 
assumed to be found for each of q? and q2 with the first 
reference entity Hi , hence leading to an integration S40 of 
records corresponding to q , and 42 that are linked to records 
ofu ,. That is , the same entry “ POWER7 ” is now mapped to 
each record of the previously unlabeled query entities q , and 
42. Again , the tabular representation of FIG . 13 is merely a 
guide for the eye . 
[ 0052 ] At present , the pre - processing steps S11 - S18 and 
S21 - S28 are discussed in more detail . Such steps will 
typically not be performed concurrently . For example , the 
master database 10 may be continually updated , e.g. , as a 
background task upon integrating new data therein , such that 
tokenized versions 16 of the records 14 are constantly 
available . For example , tokenized versions 26 of any new 
records 24 may be stored upon integrating such records 24 
in the master database 10. Still , a first - time implementation 
of the present methods may require to perform pre - process 
ing steps S11 - S18 as depicted in FIG . 15 , which are here 
assumed to be mere counterparts of steps S21 - S28 , as 
performed in respect of query entities . 
[ 0053 ] Any new query may be processed one at a time , 
i.e. , one after the other , although parallelization may be 
available , in variants . Referring back to FIGS . 5 , 6 , when a 
given query entity 23 , 24 from the query database 20 is to 
be accessed S28 for matching against entities of the master 
database 10 , this query may first be processed according to 
steps S21 - S27 . This query entity 23 , 24 corresponds to an 
entry 23 of the query database , which entry 23 is mapped 
onto a textual description 24. As said earlier , this query 
entity 23 , 24 may first need be pre - processed , so as to 
decompose S26 the textual description 24 into tokens 26. In 
variants , however , query entities may have been pre - pro 
cessed at an earlier stage and thus be readily processed for 
matching again the master database 10 . 
[ 0054 ] Moreover , additional steps may be required . For 
instance , the decomposition of the textual description 24 
may include sub - steps S25 , S26 , whereby some of the 
consecutive words of the textual description 24 are concat 
enated S25 to form corresponding tokens 26. Reasons for 
doing so is that composite words and other signs in data 
bases of commercial names are often spelled differently 
( sometimes separated by a space or dash , or not separated at 
all ) . Thus , concatenation steps S15 , S25 are preferably 
performed so as to increase the chance for same entity 
records to be identically spelled , eventually . Incidentally , 
this results in decreasing the number of tokens per entity , 
after tokenization S16 , S26 . For example , common variants 
of the IBM name , be they correctly spelled or not ( e.g. , 
“ International Business Machines ” , “ International - Busi 
ness - Machines ” , etc. ) , could all be concatenated to form the 
basis of a same elemental record , which may later on be 
transformed into a same record ( e.g. , “ IBM ” ) . 
[ 0055 ] In addition , consecutive words ( i.e. , strings ) may 
be concatenated at steps S15 , S25 so as to include , on the one 
hand , a string of characters ( e.g. , purely alphabetical char 
acters ) and , on the other hand , a string of digits , to form 
alphanumeric tokens that involve , each , both letters and 
numerals , for the reasons mentioned earlier . For example , as 
“ POWER7 ” may possibly appear in some description , incor 
rectly spelled as “ POWER 7 ” , the two consecutive strings 
“ POWER ” and “ 7 ” may be sought to be concatenated to 
form “ POWER7 " . More weight can be given to such tokens 
upon summing S36b scores of token pairs to obtain the 
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entity scores , as these happens to be much more distinctive 
in practice for applications as contemplated herein . Still , 
even in such cases , the minimal granularity chosen for the 
tokens remains words . I.e. , each token includes at least a 
word from the initial description 14 , 24 , which word is 
possibly augmented by another string . Other approaches are 
known , which could also be used in the context of this 
invention to capture discriminative words . Examples are 
mentioned later . 
[ 0056 ] In addition , and prior to tokenizing records 14 , 24 , 
additional cleaning S15 , S25 may be required , to get rid of 
stop words and the like , as usual . After tokenization S16 , 
S26 , tokenized versions 16 , 26 of the entity records 14 , 24 
can be suitably stored , so as to be readily accessible S18 , 
S28 for matching purposes . 
[ 0057 ] Depending on the application scenario , additional 
steps may be required , prior to steps S15 - S17 ( or S25 - S27 ) . 
For example , the initial databases 10 , 20 may possibly not be 
readily utilizable for matching entities . In particular , a query 
database 20 may first need be decomposed S22 , S24 into 
suited query entities ( FIGS . 1 , 2 ) . In practice , the query 
entities obtained at step S27 may be processed S32 - S36b 
one after the other ( or in parallel ) , to match against a set of 
entities of the master database . I.e. , a given query entity is 
selected at step S28 for matching against a set of reference 
entities , which are successively selected at step S18 for 
performing such comparisons . 
[ 0058 ] Entity descriptions 14 , 24 can be regarded as an 
arbitrary set of words . As explained earlier , matching a given 
pair of descriptions entails tokenizing them into individual 
words ( or concatenated words ) . The resulting tokens are 
then pair - wisely compared to compute a similarity score . 
Finally , the token similarities are aggregated into an overall 
similarity score . As a consequence , matching a query record 
against a master database requires to compare a large 
number of tokens for similarity . For this reason , additional 
blocking may be used $ 12 , S22 ( FIGS . 1 , 2 ) , whereby 
databases 10 , 20 are first decomposed into blocks 12 , 22 , to 
ease the subsequent comparisons S32 - S36b . E.g. , those 
blocks 22 that , clearly , are incompatible with a given block 
12 need not be taken into account when attempting to match 
a given query entity from this given block 12 . 
[ 0059 ] In addition , referring to both FIGS . 15 and 16 , 
similar reference entities 16 of the master database 10 may 
advantageously be grouped S19 , S19a , S31 to further restrict 
the set of reference entities 16 to be used for matching a 
given query entity . There , several approaches can be con 
templated , as discussed below . In each case , the subsequent 
computation of the entity similarity scores can effectively be 
performed for a reduced set of reference entities 13 , 16 from 
the master database 10 , which improves the performance of 
the similarity matching system . 
[ 0060 ] A first approach , which is reflected in FIG . 15 , is to 
group S31 similar reference entities 16 based on query 
entities successively processed ( leveraging the history of 
past queries ) . Namely , upon receiving a given query entity 
for matching purposes , the algorithm may first attempt to 
identify , among query entities that have previously been 
processed for record linkage ( through steps such as S21 
S28 , S32 - S38 ) , a set of most similar query entities . Then , 
because closest reference entities 16 have already been 
identified for such previous query entities , a subset of 
reference entities 16 can easily be identified . Then the 
algorithm may attempt to match S32 - S38 the given query 

entity received against this subset of reference entities , for 
record linkage purposes S40 . In case no match is found , then 
the subset may be progressively extended to most similar 
reference entities , and so on . 
[ 0061 ] A second approach is depicted in FIG . 16. Here , 
reference entities 16 of the master database 10 are clustered 
S19 to form clusters of similar reference entities . In a 
subsequent steps , reference entities are selected S19a from 
each of the clusters obtained S19 to form a set of dissimilar 
reference entities , to which a current query entity is com 
pared . That is , the set of reference entities considered for 
comparison purposes now comprises reference entities 
selected S19a from respective clusters , which entities are 
therefore dissimilar , a priori . Upon completion of steps 
S32 - S38 , a closest reference entity may be identified , if any , 
from which another set of reference of entities may be 
devised , by similarity , so as to refine the comparisons 
S32 - S38 . 
[ 0062 ] The reference entities can for instance be initially 
clustered S19 based on similar metrics and averages as 
described above . In variants , any similarity property may be 
used to cluster S19 the master database . 
[ 0063 ] In both the variants of FIGS . 15 and 16 , the steps 
aiming at identifying closest tokens 35 and closest reference 
entities will effectively be performed for reduced sets of the 
reference entities of the master database 10 , which further 
improves the efficiency of the matching algorithm . 
[ 0064 ] The above embodiments have been succinctly 
described in reference to the accompanying drawings and 
may accommodate a number of variants . Several combina 
tions of the above features may be contemplated . Examples 
are given below . 

1.2 Specific Embodiments of Methods of Record Linkage 
[ 0065 ] Embodiments described below aim at solving the 
problem of entity matching for both company names and 
product descriptions , for which a similarity measure is 
desired , which is : 
[ 0066 ] independent or partially independent of a token 
order ( i.e. , words or concatenated strings ) , 
[ 0067 ] resilient to small typos and text inconsistencies , 
and 
[ 0068 ] giving more weight to matching scores of discrimi 
native tokens . 
[ 0069 ] On the one hand , discriminative tokens can be 
defined in terms of TF - IDF weighting , as captured using , 
e.g. , the so - called WHIRL similarity . In simpler variants , 
e.g. , for IT products : almost all tokens that remain after 
cleaning may be considered as equally important in the 
product descriptions , subject to alphanumeric tokens , which 
could be given more weight , as discussed in sect . 1.1 . 
[ 0070 ] With this regard , a hybrid similarity measure can 
be used , which is based on the Levenshtein measure that is 
applied to tokenized product descriptions . Before applying 
the similarity measure , product descriptions are prepro 
cessed by removing unnecessary punctuation , spaces , upper 
case , merging short tokens with consecutive numeric tokens , 
e.g. , so as to transform “ z 10 ” into “ z10 " . Vendor names of 
products and company names get additional preprocessing 
by eliminating uninformative stop - words like “ inc . ” , “ corp . 
” , etc. , and by using special mapping dictionaries for brand 
names and acronyms , for example , “ IBM ” ? “ International 
Business Machines Corporation ” . 
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[ 0071 ] Besides properties described above , the similarity 
matching system may have parameters that can be trained 
for each particular use case , which makes it adaptable to 
different applications . Such parameters may include one or 
more of : the weight a of alphanumeric tokens , the impor 
tance of the token order , and the strength ß of the similarity 
scores . As the number of parameters is small , the parameters 
can be trained using very limited training data that capture 
correct matches . 
[ 0072 ] A record that represents an entity q from the query 
database is split into tokens ti , i = 1 , 2 , ... , n that are 
compared with tokenized records from the master database . 
For each token in a query entity we search for the closest 
token r , k = 1 , ... , m in a reference entity u from the master 
database , thereby obtaining a corresponding , highest simi 
larity score s ( t ; ) , which can be written : 

s ( t : ) = Max [ LevenshteinScore ( t ; nk ) , 97 Eu ] . 
[ 0073 ] The scores of the query tokens are then aggregated 
obtaining the similarity score of the record pair . As 
explained in sect . 1.1 , the LT similarity score for a query line 
q against the master entity u can be computed as follows : 

as 

? Ji = 1 LT ( q , u ) = 
Q • s ( t ; ) . 1 ( ti E A , ) + s ( t ; ) . 1 ( t ; E - A ) 
X = 1 a · 1 ( t ; E A , ) + 1 ( t ; E A ) 1 

[ 0074 ] Imposing ae ( 0 , 1 ] makes sure that alphabetic 
tokens always receive a weight that is smaller than or equal 
to the weight of alphanumerical tokens . Various texts were 
performed , to verify the hypothesis about the importance of 
the alphanumeric tokens . A pair with the largest LT simi 
larity score is considered to be the best match . Yet , because 
certain product records should not be matched , a further 
parameter ß is used , which can be set as BE ( 0 , 1 ] , provided 
certain normalization conditions are satisfied . If the closest 
record has a similarity score larger than B , the entity q from 
a query dataset is considered to be matched to the entity u 
from the master dataset , otherwise q is considered to be 
unmatched . 
[ 0075 ] In embodiments , only the best match , whose maxi 
mum similarity score is larger than B , could be considered as 
a match . In variants , the top - k matches might be considered 
as actual matches . Parameters a and ß can advantageously 
be trained to achieve an optimal similarity measure . In other 
variants , only ß is trained . 

methods discussed earlier . Some of the data points may be 
selected S39 for training purposes , and accordingly stored 
on a data repository 15 , e.g. , on any suitable memory or 
storage component of the system 1. The points selected at 
step S39 may for example be points that have been validated 
by an expert . 
[ 0078 ] Selected data point can then be used to train S50 
the network 2 offline . Upon completion of a training cycle , 
updated parameters are passed to another unit 101 of the 
system ( not shown in FIG . 17 , see FIG . 18 ) , for it to 
implement steps S32 - S40 , based on such updated param 
eters . Meanwhile , the model may be re - trained , based on 
newer training data selected at step S39 , and so on . 
[ 0079 ] FIG . 18 depicts a general computerized unit 101 , 
which can advantageously be used in a system 1 , to imple 
ment the present methods . Such a unit 101 notably com 
prises CPUs and / or GPUs configured for enabling paral 
lelization of computerized steps , involved in 
embodiments . Yet , the present methods may also involve 
virtual machines , e.g. , in the cloud , dedicated to the large 
matching computations , if needed . 
[ 0080 ] The unit 101 depicted in FIG . 18 may be , e.g. , a 
general- or specific - purpose computer . In exemplary 
embodiments , in terms of hardware architecture , the unit 
101 includes at least one processor 105 , and a memory 110 
coupled to a memory controller 115. Preferably though , 
several processors ( CPUs , and / or GPUs ) are involved , to 
allow parallelization , as noted above . To that aim , the 
processing units may be assigned respective memory con 
trollers , as known per se . 
[ 0081 ] One or more input and / or output ( I / O ) devices 145 , 
150 , 155 ( or peripherals ) are communicatively coupled via 
a local input / output controller 135. The input / output con 
troller 135 can be coupled to or include one or more buses 
and a system bus 140 , as known in the art . The input / output 
controller 135 may have additional elements , which are 
omitted for simplicity , such as controllers , buffers ( caches ) , 
drivers , repeaters , and receivers , to enable communications . 
Further , the local interface may include address , control , 
and / or data connections to enable appropriate communica 
tions among the aforementioned components . 
[ 0082 ] The processor ( s ) 105 is a hardware device for 
executing software , particularly that stored in memory 110 . 
The processor ( s ) 105 can be any custom made or commer 
cially available processor ( s ) , may include one or more 
central processing units ( CPUs ) and / or one or more graphics 
processing units ( GPUs ) , or , still , have an architecture 
involving auxiliary processors among several processors 
associated with the computer 101. In general , it may involve 
any type of semiconductor based microprocessor ( in the 
form of a microchip or chip set ) , or generally any device for 
executing software instructions . 
[ 0083 ] The memory 110 can include any one or combi 
nation of volatile memory elements ( e.g. , random access 
memory ) and nonvolatile memory elements . Moreover , the 
memory 110 may incorporate electronic , magnetic , optical , 
and / or other types of storage media . Note that the memory 
110 can have a distributed architecture , where various com 
ponents are situated remote from one another , but can be 
accessed by the processor ( s ) 105 . 
[ 0084 ] The software in memory 110 may include one or 
more separate programs , each of which comprises an 
ordered listing of executable instructions for implementing 
logical functions . In the example of FIG . 18 , the software in 

2. Computerized Data Management System 
[ 0076 ] Referring now to FIGS . 17 and 18 , another aspect 
of the invention is described , which concerns a computer 
ized data management system 1. Essentially , this system is 
configured , both in terms of hardware and software , to 
perform steps of a method such as described above . To that 
aim , the system will comprise suitably configured process 
ing means , memory and interface means . 
[ 0077 ] Referring first to FIG . 17 , the system 1 may oth 
erwise be configured to train S50 a machine - learning model , 
e.g. , implemented by a neural network 2 , so as to learn 
parameters ( e.g. , a and B ) , as involved in embodiments 
discussed earlier . Once properly trained , the model may 
perform inferences as to optimal parameters a and ß based 
on inputs . In a possible scenario , data points are collected 
from the query entities processed for linkage , according to 
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the memory 110 includes computerized methods , forming 
part of all of methods described herein in accordance with 
exemplary embodiments and , in particular , a suitable oper 
ating system ( OS ) 111. The OS 111 essentially controls the 
execution of other computer programs and provides sched 
uling , input - output control , file and data management , 
memory management , and communication control and 
related services . 
[ 0085 ] The methods described herein may be in the form 
of a source program , executable program ( object code ) , 
script , or any other entity comprising a set of instructions to 
be performed . When in a source program form , then the 
program needs to be translated via a compiler , assembler , 
interpreter , or the like , as known per se , which may or may 
not be included within the memory 110 , so as to operate 
properly in connection with the OS 111. Furthermore , the 
methods can be written as an object oriented programming 
language , which has classes of data and methods , or a 
procedure programming language , which has routines , sub 
routines , and / or functions . 
[ 0086 ] Possibly , a conventional keyboard and mouse can 
be coupled to the input / output controller 135. Other I / O 
devices 140-155 may be included . The computerized unit 
101 can further include a display controller 125 coupled to 
a display 130. In exemplary embodiments , the computerized 
unit 101 can further include a network interface or trans 
ceiver 160 for coupling to a network , to enable , in turn , data 
communication to / from other , external components . 
[ 0087 ] The network transmits and receives data between 
the unit 101 and external devices , e.g. , physical databases 
10 , 20 as depicted in FIGS . 1 , 2. The network is possibly 
implemented in a wireless fashion , e.g. , using wireless 
protocols and technologies , such as Wifi , WiMax , etc. The 
network may be a fixed wireless network , a wireless local 
area network ( LAN ) , a wireless wide area network ( WAN ) 
a personal area network ( PAN ) , a virtual private network 
( VPN ) , intranet or other suitable network system and 
includes equipment for receiving and transmitting signals . 
[ 0088 ] The network can also be an IP - based network for 
communication between the unit 101 and any external 
server , client and the like via a broadband connection . In 
exemplary embodiments , network can be a managed IP 
network administered by a service provider . Besides , the 
network can be a packet - switched network such as a LAN , 
WAN , Internet network , an Internet of things network , etc. 
[ 0089 ] If the unit 101 is a PC , workstation , intelligent 
device or the like , the software in the memory 110 may 
further include a basic input output system ( BIOS ) . The 
BIOS is stored in ROM so that the BIOS can be executed 
when the computer 101 is activated . When the unit 101 is in 
operation , the processor ( s ) 105 is ( are ) configured to execute 
software stored within the memory 110 , to communicate 
data to and from the memory 110 , and to generally control 
operations of the computer 101 pursuant to the software . 
[ 0090 ] The methods described herein and the OS 111 , in 
whole or in part are read by the processor ( s ) 105 , typically 
buffered within the processor ( s ) 105 , and then executed . 
When the methods described herein are implemented in 
software , the methods can be stored on any computer 
readable medium , such as storage 120 , for use by or in 
connection with any computer related system or method . 

3. Computer Program Products 
[ 0091 ] According to a final aspect , the invention can be 
embodied as a computer program product for linking records 
of a given query entity to records of a master database . The 
computer program product comprises a computer readable 
storage medium having program instructions embodied 
therewith , where the program instructions are executable by 
one or more processors , to cause to take steps according to 
the present methods . 
[ 0092 ] The present invention may thus be embodied as a 
computerized hardware system , a method , and / or a com 
puter program product at any possible technical detail level 
of integration . The computer program product may include 
a computer readable storage medium ( or media ) having 
computer readable program instructions thereon for causing 
a processor to carry out aspects of the present invention . 
[ 0093 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e.g. , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0094 ) Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0095 ] Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions , instruction - set - architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , con 
figuration data for integrated circuitry , or either source code 
or object code written in any combination of one or more 
programming languages , including an object oriented pro 
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gramming language such as Smalltalk , C ++ , or the like , and 
procedural programming languages , such as the C program 
ming language or similar programming languages . The 
computer readable program instructions may execute 
entirely on the user's computer , partly on the user's com 
puter , as a stand - alone software package , partly on the user's 
computer and partly on a remote computer or entirely on the 
remote computer or server . In the latter scenario , the remote 
computer may be connected to the user's computer through 
any type of network , including a local area network ( LAN ) 
or a wide area network ( WAN ) , or the connection may be 
made to an external computer ( for example , through the 
Internet using an Internet Service Provider ) . In some 
embodiments , electronic circuitry including , for example , 
programmable logic circuitry , field - programmable gate 
arrays ( FPGA ) , or programmable logic arrays ( PLA ) may 
execute the computer readable program instructions by 
utilizing state information of the computer readable program 
instructions to personalize the electronic circuitry , in order to 
perform aspects of the present invention . 
[ 0096 ] Aspects of the present invention are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 
[ 0097 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 
[ 0098 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
[ 0099 ] The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 

functions noted in the blocks may occur out of the order 
noted in the Figures . For example , two blocks shown in 
succession may , in fact , be executed substantially concur 
rently , or the blocks may sometimes be executed in the 
reverse order , depending upon the functionality involved . It 
will also be noted that each block of the block diagrams 
and / or flowchart illustration , and combinations of blocks in 
the block diagrams and / or flowchart illustration , can be 
implemented by special purpose hardware - based systems 
that perform the specified functions or acts or carry out 
combinations of special purpose hardware and computer 
instructions . 
[ 0100 ] While the present invention has been described 
with reference to a limited number of embodiments , variants 
and the accompanying drawings , it will be understood by 
those skilled in the art that various changes may be made and 
equivalents may be substituted without departing from the 
scope of the present invention . In particular , a feature 
( device - like or method - like ) recited in a given embodiment , 
variant or shown in a drawing may be combined with or 
replace another feature in another embodiment , variant or 
drawing , without departing from the scope of the present 
invention . Various combinations of the features described in 
respect of any of the above embodiments or variants may 
accordingly be contemplated , that remain within the scope 
of the appended claims . In addition , many minor modifica 
tions may be made to adapt a particular situation or material 
to the teachings of the present invention without departing 
from its scope . Therefore , it is intended that the present 
invention not be limited to the particular embodiments 
disclosed , but that the present invention will include all 
embodiments falling within the scope of the appended 
claims . In addition , many other variants than explicitly 
touched above can be contemplated . 
What is claimed is : 
1. A computer - implemented method of record linkage , the 

method comprising : 
accessing a given query entity of a query database and a 

set of reference entities from a master database , 
in each entity accessed corresponds to an entry in 

a respective database , which entry is mapped to a set of 
words decomposed into tokens ; 

for each reference entity of said set of reference entities 
from the master database : 
identifying , for each token of the given query entity , a 

closest token in said each reference entity according 
to a string metric , whereby closest tokens identified 
are respectively associated with highest scores of 
similarity with the tokens of the query entity ; and 

computing an entity similarity score between said given 
query entity and said each reference entity , based on 
said highest scores of similarity , 

identifying a reference entity of the master database that 
is closest to said given query entity , based on the entity 
similarity score computed for each of said reference 
entities ; and 

based on the closest reference entity identified , linking 
records of the given query entity to records of the 
master database . 

2. The method according to claim 1 , wherein 
identifying said closest tokens comprises : 

computing token similarity scores according to said 
string metric , whereby the computed scores depend , 
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each , on a distance between a respective token from 
the given query entity and a token from the master 
database ; and 

identifying , for each token of the given query entity , 
said closest token in said each reference entity based 
on the scores computed with respect to tokens of said 
each reference entity . 

3. The method according to claim 1 , wherein 
the string metric used to identify said closest tokens is a 

Levenshtein distance metric . 
4. The method according to claim 3 , wherein 
computing the entity similarity score is performed by 
summing highest scores of similarity associated with 
the closest tokens identified in said each reference 
entity . 

5. The method according to claim 4 , wherein 
the closest tokens identified in said each reference entity 

comprises a first type of tokens , which are alphanu 
meric tokens , and a second type of tokens , which are 
non - alphanumeric tokens , and 

the highest scores of similarity summed are further 
weighted differently , depending on whether they are 
associated to closest tokens of the first type or of the 
second type . 

6. The method according to claim 5 , wherein 
the method further comprises training a machine - learning 
model for it to learn relative weight to use for weighting 
said highest scores of similarity , based on successive 
query entities processed to link records of such query 
entities to records of the master database . 

7. The method according to claim 5 , wherein 
the entity similarity score LT is computed according to : 

11. The method according to claim 10 , wherein 
decomposing the textual description into tokens com 

prises concatenating some of the consecutive words of 
the textual description to form corresponding tokens . 

12. The method according to claim 10 , wherein 
the consecutive words concatenated include , on the one 

hand , a string of characters , and on the other hand , a string of digits , thereby resulting in alphanumeric 
tokens . 

13. The method according to claim 1 , wherein the method 
further comprises , prior to accessing the given query entity 
and the reference entities : 
decomposing the query database into query entities ; and 
selecting said given query entity among said query enti 

ties . 
14. The method according to claim 1 , wherein the method 

further comprises , prior to accessing the given query entity 
and the reference entities : 

grouping similar reference entities of the master database 
to form said set of reference entities . 

15. The method according to claim 14 , wherein grouping 
said similar reference entities comprises : 

clustering reference entities of the master database to 
obtain clusters of similar reference entities ; and 

selecting reference entities from each of the clusters 
obtained to form said set of reference entities , whereby 
said set of reference entities comprises several refer 
ence entities , each selected from a respective one of the 
clusters obtained . 

16. The method according to claim 14 , wherein grouping 
said similar reference entities comprises : 

identifying , among query entities that have previously 
been processed similarly as said given query entity , a 
set of query entities that are most similar to said given 
query entity ; and 

identifying reference entities of the master database that 
have previously been found to be closest to said set of 
most similar query entities identified , to form said set 
of reference entities . 

17. The method according to claim 1 , wherein 
each entity accessed corresponds to an entry mapped to a 

set of words decomposed into tokens , where each of the 
tokens includes a string that comprises at least one 
word from said set of words . 

18. A computerized data management system , configured 
for : 

accessing a given query entity of a query database and a 
set of reference entities from a master database , 
wherein each entity accessed corresponds to an entry in 
a respective database , which entry is mapped to a set of 
words decomposed into tokens ; 

for each reference entity of said set of reference entities 
from the master database : 
identifying , for each token of the given query entity , a 

closest token in said each reference entity according 
to a string metric , whereby closest tokens identified 
are respectively associated with highest scores of 
similarity with the tokens of the query entity ; and 

computing an entity similarity score between said given 
query entity and said each reference entity , based on 
said highest scores of similarity , 

identifying a reference entity of the master database that 
is closest to said given query entity , based on the entity 
similarity score computed for each of said reference 
entities ; and 

LT = 
a • s ( ti ) . 1 ( t ; E A. ) + s ( t ; ) . 1 ( 1 ; EA ) 
L - 1 2.1 ( ; E A , ) + 1 ( t ; E A ) 

where : 
a is a weight assigned to highest scores s ( t ; ) for 
non - alphanumeric tokens te ? , whereas highest 
scores s ( t ; ) of alphanumeric tokens tEA are 
assigned a weight equal to 1 ; and 

1 ( t ; EX ) is an indicator function , outputting 1 , if t ; 
X , and 0 otherwise . 

8. The method according to claim 1 , wherein 
records of the given query entity are linked to records of 

the master database only if the entity similarity score 
computed for the reference entity identified as closest 
to said given query entity is larger than a given thresh 
old ß . 

9. The method according to claim 8 , wherein 
the method further comprises training a machine learning 
model for it to learn said given threshold B , based on 
successive query entities processed to link records of 
such query entities to records of the master database . 

10. The method according to claim 1 , wherein 
the given query entity accessed corresponds to an entry of 

the query database , which entry is mapped to a textual 
description and accessing said given query entity fur 
ther comprises decomposing the textual description 
into tokens . 
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based on the closest reference entity identified , linking 
records of the given query entity to records of the 
master database . 

19. A computer program product for linking records of a 
given query entity to records of a master database , the 
computer program product comprising a computer readable 
storage medium having program instructions embodied 
therewith , the program instructions executable by one or 
more processors , to cause to : 

access a given query entity of a query database and a set 
of reference entities from a master database , wherein 
each entity accessed corresponds to an entry in a 
respective database , which entry is mapped to a set of 
words decomposed into tokens ; 

for each reference entity of said set of reference entities 
from the master database : 
identify , for each token of the given query entity , a 

closest token in said each reference entity according 
to a string metric , whereby closest tokens identified 
are respectively associated with highest scores of 
similarity with the tokens of the query entity ; and 

compute an entity similarity score between said given 
query entity and said each reference entity , based on 
said highest scores of similarity , 

identify a reference entity of the master database that is 
closest to said given query entity , based on the entity 
similarity score computed for each of said reference 
entities ; and 

based on the closest reference entity identified , link 
records of the given query entity to records of the 
master database . 


