
Hidden Layer Models for Company Representations and
Product Recommendations

[Application Paper]

Katsiaryna Mirylenka
IBM Research – Zurich

Switzerland
kmi@zurich.ibm.com

Paolo Scotton
IBM Research – Zurich

Switzerland
psc@zurich.ibm.com

Christoph Miksovic
IBM Research – Zurich

Switzerland
cmi@zurich.ibm.com

Jeff Dillon
IBM Canada

Markham, Canada
jdillon@ca.ibm.com

ABSTRACT
An increasing amount of marketing intelligence data is becoming
available today. This includes data that describes information
technology (IT) inventories, i.e. IT products purchased by com-
panies. It is advantageous for hardware and software service
providers to analyze this data and build recommender systems to
propose new products for client companies. Real-time recommen-
dations are usually done based on matrix factorization methods
or association rules. In this work we study the applicability of
generative models to the recommendation problem. We focus on
models that are able to reveal latent connections between compa-
nies and deployed IT products and build discriminative features
of the IT structure of a company. Additionally generative models
of company-product data are of interest for service providers
for efficient company comparison, application of similar mar-
keting strategies towards the groups of similar companies. In
this work, we first formalize the notion of a company and its IT
install base. Then, we estimate various generative models that are
able to reveal hidden structures in data. These are mainly topic
and language modeling techniques emerging in natural language
processing to the task of company-product modeling and sequen-
tial models that are widely used for product recommendations.
More precisely, the analysis is done using (a) Latent Dirichlet
Allocation (LDA) with the products in a company are treated as
a set, (b) n-gram models or sequential association rules and (c)
Recurrent Neural Networks (RNN), when the time of product
appearance is taken into account. The techniques are used for
a corpus consisting of 860k companies. The results of the study
demonstrate that simpler generative models with lower number
of parameters, such as LDA, fit company-product data better and
are more beneficial for company IT install base modeling both
in terms of goodness of fit of the model and recommendation
quality.

1 INTRODUCTION
Information technology (IT) install base1 data is provided by spe-
cialized companies that carefully maintain its quality in terms of
confidence of IT products’ presence and accuracy of timestamps
of their appearance. This kind of data has already been exploited
1Install base refers to the IT inventory of a company.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

for industrial applications and proved to be extremely useful to
get market insights in several contexts such as, for example, new
market development or white space determination. Data usually
refers to companies. For a specific company, different types of
information are provided, for example, insights about the internal
structure, what the company buys, etc. IT install base data is a
specific type of marketing intelligence data that provides, for a
set of companies, knowledge about the type of IT equipment they
own and how this equipment is distributed across their physical
locations.

Install base information is particularly useful when addressing
white spaces. If a provider of hardware services tries to acquire
new customers, install base information will illuminate the in-
sights about the business potential for a particular product do-
main. More interestingly, when combined with data about estab-
lished customers, install base information can be used to identify
companies that are similar to existing clients and therefore have
a high potential of becoming new customers by acquiring certain
sets of products.

In this paper, we concentrate on the problem of modeling
company-product relations in order to (1) identify similar compa-
nies and (2) build product recommendations. Besides the compu-
tational complexity of the similarity search problem due to the
large number of companies and product types, another challenge
is that a naïve comparison of the individual product types owned
by companies turns out to be biased towards product types that
are common to a large number of companies. Therefore, after
reviewing the related work, we focus on two approaches that
consider the hierarchical similarity of objects (companies) based
on contextual proximity of their features (product types). This
happens to be an assumption in the field of Natural Language
Processing (NLP). In our case, the similarity on the lower level is
defined via the co-occurrence of the product types in a company.
Higher levels correspond to hidden structures in the install base
and the representation of a company itself.

To get the best model representations of products and then of
companies, we estimate and evaluate various types of generative
models. We choose the best model in terms of goodness of fit
and predictive power. This model is used to extract product and
company representations which are then applied for similarity
search queries and marketing recommendations. In particular, we
compare the performance achieved by these two modeling tech-
niques: Latent Dirichlet Allocation (LDA) and Recurrent Neural
Networks (RNN). The products belonging to a company compose
a multilevel structured representation of the IT install base. Such

products are used as the basis of company similarity evaluation.
The LDA and RNN techniques are beneficial for the IT install
base modeling as they are able to reveal hidden hierarchies. RNN
is preferred over other neural network architectures as it is able
to take into account time-correlations of product time series.
Besides, both techniques are among the best performers in the
corresponding domains. LDA produces interpretable parameters,
while the embeddings obtained by RNN modeling lack the inter-
pretability. Uninterpretable parameters is a significant drawback
for business applications, which can be tolerated if these models
would perform much better.

The main contributions of this work are the following:
(1) We formalize the problem of modeling the IT install base

of companies for various types of input data, such that
the state-of-the-art unsupervised techniques from NLP do-
main can be applied. First, we formalize company-product
data treating products in a company as a set and use cor-
responding non-sequential models for this case. Second,
we treat the product data as sequences according to the
time of their appearance. The models are then compared
using their data fitting quality.

(2) The applicability of topic modeling via LDA and language
modeling via RNN is assessed for our data.We demonstrate
that LDA with 2, 3 and 4 latent topics fits the data best and,
additionally, provides the most discriminative company
features for the task of company clustering.

(3) We assess the practical applicability of the LDA and RNN
models to an industrial product recommender and com-
pare them with sequential association-rule and matrix
factorization approaches.

(4) After solving various data integration challenges, we ap-
ply the output of the best performing model, enriched
with internal company-product data, to a recommenda-
tion tool that searches for similar companies and makes
recommendations.

2 PRELIMINARIES AND PROBLEM
FORMALIZATION

The goal of this paper is to develop a recommendation system
that also allows companies to be compared based on their install
base. This comparison will be used to generate sets of similar
companies and will allow possible business developments to be
identified in real time. As the system in development is to be used
by offeringmanagers, the interpretability of the results is a crucial
requirement to be able to justify the outcome. In consequence,
models with interpretable parameters bring an advantage in our
settings.

As a source of marketing intelligence data, we use information
provided by HG Data Company, Inc. [12]. HG Data Company is
building and maintaining a comprehensive database with com-
petitive intelligence about deployed technologies. Essentially,
for each company assessed, this database provides the following
information: the type of IT products available at each site of the
company without specifying the quantities and product model
details, some indication about the confidence of the informa-
tion provided, and dates of the first as well as the most recent
successful confirmation of product presence.

Product descriptions are organized in a hierarchical fashion.
This hierarchy contains four levels. At the top, we find the ven-
dors. For each vendor, there is a list of category parents giving
a high-level grouping of the product types, for example, “Data

Center Solution” or “Hardware (Basic)”. Each category parent con-
tains a list of categories, which are finer-grain groups. Examples
of categories are “Printers” or “Midrange Computers”. Finally,
each category contains the product types available for the vendor
considered.

Our aim is to develop a sales recommendation application.
Given a customer, potential customers with similar IT install
base are provided as input to our solution, which then combines
this information with internal data. To align the product descrip-
tion between our proprietary data and the result of the company
similarity evaluation, we have focused on the category layer. Un-
fortunately, the product types do not contain a certain product
details, thus, do not allow us to link the products with the lowest
level of product descriptions in our proprietary data.Therefore
for each company we consider the product categories2 associated
with the company, independently of the vendor. In our version of
the HG Data Company database, there are 91 distinct categories.
Out of those categories, we decided, because of the nature of our
application, to restrict our study to hardware and low-level hard-
ware management software categories, thus, using 38 distinct
categories.

To link data from the HG Data Company database to our
internal data, we solved integration and cleaning issues. In the
HG Data Company database, companies are identified by their
D-U-N-S® numbers. This number is a unique 9-digit identifier,
assigned by Dun & Bradstreet, Inc. [8] to each business location.
Therefore, each company entity, such as branches, subsidiaries
and headquarters, has an individual D-U-N-S® number, and
the set of all D-U-N-S® numbers associated with a company is
organized hierarchically.

After we had chosen the product categories or company at-
tributes and aggregated the subsidiaries of a company, we created
our corpus for model training which is a binary company-product
matrix. As we do not have information about product quantities,
we consider only binary values in the company-product matrix,
where 1 means that the product belongs to the install base of the
company and 0 means that it does not.

More formally, let us consider a set of N companies repre-
sented in the HG Data Company database C = {c0, . . . , cN−1}.
Each company ci has a given set of products Ai in its install base
belonging to k categories, which can also be called attributes.
This set of attributes is included in the set of all possible attributes
A = {a0, . . . ,aM−1} containingM elements3. That is

∀ci ∈ C ; ci 7−→ Ai = {ai0 , . . . ,aik−1 } ⊂ A. (1)

The attributes might be sorted by the time of their appearance
in the IT install base of a company and treated as data series. We
denote the sorted version ofAi asASi . The information about the
attributes or products from Ai can be re-written using vectors
Ai instead of sets of products:

∀ci ∈ C ; ci 7−→ Ai , dim(Ai) = M , (2)

Ai =
[
1a0∈Ai , . . . ,1aM−1∈Ai

]
. (3)

A naïve approach to compare companies is to calculate the
distance between their initial attributes A or AS . In Section 3,
we discuss why such an approach leads to results that are not
sufficiently meaningful. The initial attribute space does not repre-
sent companies in a discriminative manner because the distance
2In the remainder of the paper we use the terms products and product categories
interchangeably, meaning product categories.
3In our application M = 38.

between companies is affected too strongly by the most popular
attributes. To overcome this problem, we introduce a new space
of company features that better represents the IT install base:

∀ci ∈ C ; ci 7−→ Bi ∈ R
L , L < M . (4)

Considering the new company features B, it is possible to ex-
press the distance between two companies as a classical distance
between two vectors:

∀ci , c j ∈ C ; dist (ci , c j) = d (Bi ,Bj), (5)
where d (., .) is any vector distance, e.g., euclidean or cosine dis-
tance.

One of the goals of this paper is to automatically discover
the most representative features of a company B, based on ini-
tial company attributes AS or attribute vectors A . The features
should be representative in terms of goodness of fit of the gener-
ative model of company-product data and in terms of quality of
similarity clusters of companies. The methods of feature learning
for companies are discussed in Section 4. Learned company and
product features are, then, used for product recommendations.

3 RELATEDWORK
In this section, we consider the applicability of existing methods
for building discriminative company representations, namely,
the feature vectors Bi for each company ci . Bi are built using
product vectors of a company, Ai , or a sequence of products per
company, ASi . This representations should capture the hidden
structures in the company-product data.

3.1 Co-Clustering
Co-clustering or bi-clustering is a technique used for building
two-dimensional groups of objects that are represented by a
matrix. The matrix is clustered along the rows and the columns.
The principle of co-clustering was first introduced by Hartigan
in 1972 [10]. Since then, several algorithms have been proposed
mainly aimed at product recommendations.

The PaCo algorithm [27] and the OCuLaR algorithm for co-
clustering with overlapping [11] are most closely related to our
problem. The main issue with these approaches is that they are
built on initial company representations Ai , which may be not
the best features to distinguish IT install bases of companies.
When we applied the PaCo algorithm as well as spectral co-
clustering to a small sample of around 500 companies that belong
to a healthcare industry, we could not generate meaningful co-
clusters. The only co-cluster generated contained overall popular
products. Our first attempt of using LDA for this small subset of
companies and products [18] provided us with much better re-
sults and inspired us to continue our search of company features
in this direction. We believe that modified product features could
improve the quality of co-clusters. As we also show in Section 5,
raw initial company-product representations Ai neither describe
the generative model of our data well nor perform well for the
task of company clustering. In addition, given the large number
of companies to analyze (on the order of a million), co-clustering
results are difficult to interpret because the intuitive visual way
to consume co-cluster results is not possible in this case.

3.2 Pattern mining
Another possibility is to explore product install base modeling
using the approaches of the frequent pattern search from the time
series domain. One family of such approaches is Association Rule

mining [2], which is partially time agnostic. It was demonstrated
in [6], [7] that taking into account the sequential nature of data
is beneficial for time series tasks, such as similarity matching and
nearest neighbor search. This inspired another line of techniques
that are based on estimating Markov Chain models via real-time
algorithms for ‘conditional heavy hitters‘ discovery [20], [17].
However, the mined patterns are not able to represent the hidden
structures of the IT install base of companies, though we use
them to compare more advanced methods with.

3.3 Applicability of NLP Concepts
In the past decade, much attention in the literature was given to
modeling techniques related to NLP. In this subsection, we dis-
cuss their applicability to the problem of modeling install bases
of companies. One of the key tasks in NLP is language modeling.
The goal is to learn representations for hierarchies of concepts,
starting from words, phrases, and sentences, which are then orga-
nized into more sophisticated concepts, such as documents and
topics. In recent years, a lot of research has been devoted to the
advancement and improvement of topic modeling and language
processing methods, including, among others, LDA and Deep
Neural Network (DNN) approaches. We assume that the gener-
ative model of our company install bases is similar to the NLP
models. The product-company world consists of the following
layers: a layer of companies, a layer of product categories and a
hierarchy of latent structures inside the install base. Given this
assumption, these company layers can be mapped to NLP con-
cepts for application in the LDA and DNN methods. Considering
NLP terminology, we associate companies with documents and
products with words. All companies that we consider in our anal-
ysis form the corpus of company documents. We further assume
that products or product embeddings can be grouped into latent
topics, which then construct specific and discriminative features
Bi for each company ci , 0 = 1, 2, ...,N − 1.

3.4 Deep Neural Networks and Product
Embeddings

Currently DNNs are the core of the-state-of-the-art techniques
for the tasks related to NLP. Mikolov et al. [16] [15] use a simpli-
fied architecture of neural networks that allows them to use very
large training datasets and to build accurate word embeddings in
Euclidean space of high dimensionality very efficiently. The word
embeddings can afterwards be used directly without any trans-
formation or aggregation as features for clustering. They also can
be aggregated to represent a document as a vector in a smaller
space using, for example, the Fisher Kernel Framework (proba-
bilistic modeling of the corpus of documents using a mixture of
Gaussians [14]) similarly as described in the work [5].

The larger the training set (hundreds of millions) and the
larger the dimensionality of the word embedding, the better is the
representation, although after a certain point the improvement
is no longer significant. This is partially due to the large size of
the vocabulary that typically needs to be learned, namely, 600K.
As in our case the number of products is much smaller, there
is a chance that we will learn good embeddings from tens of
thousands of companies.

State-of-the-art performance on language modeling task is
achieved by RNN family of models and specifically by RNN with
Long Short-Term Memory (LSTM) units with the dropout reg-
ularization method [29]. This technique applies a distinct view

on the information flow, using information not about indepen-
dent instances but taking into account the sequential nature
of data. Therefore, recurrent networks are sensitive to the past
inputs and can adapt to them. Other RNN realization, such as
Gated Recurrent Unit (GRU) [4] which is a simpler version of
LSTMs, has recently gathered popularity, but study [9] empiri-
cally demonstrates the the performance of GRUs and other RNN
architectures can be better for some datasets, but do not outper-
form LSTM in general. We will apply LSTM architecture to our
company-product modeling using a time series input, Ai , and
analyze its performance both in terms of goodness of fit and as a
recommender of future IT products of companies.

In work [19], we have demonstrated that LSTMs are applicable
to the task of modeling company-product time series. We used
RNNs with Long Short-Term Memory (LSTM) units with the
dropout regularization method [29]. Prior to applying RNNs in
our work [19] we demonstrated that company-product time se-
ries are of clear sequential nature. This was done using statistical
hypothesis testing and was based on the fact that the frequency
of the i.i.d. time series observations has binomial distribution. In
this work, we compare accuracy of the RNN modeling, where
product time series are taken into account, with the performance
of LDA, where products in a company are treated independently,
without their timestamps. We also assess both methods for the
recommendation task, comparing their results with the associa-
tion rule-based recommender.

3.5 Latent Dirichlet Allocation
Blei et al. [3] introduce LDA, which is a generative probabilistic
model for collections of discrete data, such as corpora of doc-
uments (or company-product vectors in our case) that is also
used for collaborative filtering. Each item, such as a document
or a company, is modeled as a finite mixture of an underlying
set of topics or hidden groups. The topic probabilities for an
item provide an explicit representation of a document. In parallel,
word embeddings are also trained. The embeddings represent
relatedness of words in the space of document topics.

The number of latent topics is a user-defined parameter. It
can be chosen using measures of the goodness of fit of the LDA
model, such as, a total log-loss for a testing set of documents
or as the average perplexity of how well each single word is
modeled. In our case of company-product modeling, LDA learns
both product embeddings and company representations Bi in
the vector space that is the size of the number of latent topics.
The main advantage of LDA over RNN and other topic modeling
techniques such as Latent Semantic Indexing [13] is that LDA-
learned features are easy to interpret. This fact is important for
adopting those techniques in marketing environment.

4 MODELING APPROACH
In the current setting, we can model and learn the semantic
information about companies in terms of their IT install base,
which is based on the fact that similar products and, then, similar
companies should be close in the L-dimensional space, where
L < M . In this case, the recommendations are extracted using the
notion of similarity between the companies. Recommendations
are based on the similarity calculated given the dataset from
HG Data Company. The gaps in possible product offerings are
extracted from our internal databases for similar companies. The
strength of the recommendation is in this case measured via the
strength of the company similarity.

We compare two types of unsupervisedmodels: non-sequential
modeling (LDA-based), when products are considered indepen-
dently (A company features are used as input), and sequential
modeling (LSTM-based), when we take into account the order of
product appearance in the HG Data Company database via AS
input. Both modeling techniques capture the hidden structures
in the company-product data and produce features (representa-
tions) for products and companies. We assess the quality of the
following company-product representations:

(1) Naïve representation: binary or Term Frequency-Inverse
Document Frequency (TF-IDF) [22] vector of products.
In our case, TF-IDF can be also reformulated as product
frequency-inverse company frequency.

(2) RNN-based representation: embedding (vector) that shows
the position of a company in an L-dimensional vector
space. The position depends on the contextual similarity
of products of a company.

(3) LDA-based representation: vector of real numbers that
shows the probability that a company belongs to an LDA
topic.

The modeling methods are evaluated using the measures of good-
ness of fit of a model, and, additionally, the representations are
evaluated for the company clustering task. When the proper rep-
resentation is chosen, we can find the top-k similar companies
based on HG Data Company data. The models are also evaluated
for the recommendation task.

4.1 Model adaptation and parameter
estimation

We train LDA both on initial binary company-product represen-
tations4 and TF-IDF representations. The type of data represen-
tation is considered as one of the parameters for LDA training.
Although LDA intrinsically models data to give more weight to
the most representative features, we verify whether the model
improves if TF-IDF representation is given as an input. Another
crucial parameter of LDAmodeling is the number of latent topics;
this number is chosen using goodness of fit measures.

For RNN, we used various architectures as modeling param-
eters. More details about LSTM modeling can be found in [19].
We select the parameters of LDA and LSTM by minimizing the
perplexity level of a model. The average perplexity per product is
calculated on a test set using Ai or ASi company representation,
with the total number of products being n. Perplexity5 shows
how well the probability distribution defined by a model (for
example, LDA or LSTM) predicts testing data and is calculated
as follows:

Perplexity = exp−
1
n
∑n
i=1 ln P (ai) ,

where P (·) is the probability distribution induced by a model.
The lower the perplexity, the better the model. The best features
of a company B are computed using the models with the lowest
perplexity. Instead of the original binary vectors A or binary
sets of products AS , a company is represented via the vector of
latent LDA topics or company embeddings trained on RNN.

4Initial binary representation can also be called ‘Bag Of Words’ (BOW) representa-
tion in terms of NLP theory.
5We use the terms perplexity and average perplexity per product interchangeably.

4.2 Validation of Company Representations
using Clustering

To see how extracted features perform in comparison with initial
binary features, or initial TF-IDF features, we assess the quality
of learned representations for a clustering task.

As measure of clustering quality, we use silhouette scores6.
The silhouette score is calculated as the ratio of intraclass and
interclass distances. The higher the score, the better the clusters
are separated from one another. We choose an appropriate model
depending on the silhouette score value for the desired number
of clusters. We expect that the model with the highest silhouette
scores is also the best according to the perplexity results, as both
validationmeasures favor themost descriptive and representative
features.

4.3 Recommendation Capabilities of
Generative Models

In addition to the perplexity evaluation, we also check the recom-
mendation capabilities of LDA, LSTMs and n-gram based models.
For the marketing recommendation scenario, it is essential to
provide an outlook over a relatively long period of time; typically
the span of interest r ranges from 6 to 24 months. To evaluate
this capability, we assess the model recommender for a sliding
windowWr that covers r months. This time window slides with
a granularity of two month in order to accumulate significant
changes in the install base of a company. At each iteration, the
recommender provides a series of observations i.e. the probability
of a given product appearing within a particular windowWr . In
order to access the statistically significant accuracy, we gather
the accuracy information for a number of sliding windows. The
cardinality of the set of accuracy observations is equal to the
number of sliding windows and is denoted as l . All the previous
information that happened before the start of a sliding window
is used for model training.

To obtain a recommendation for a particular product, we as-
sess the conditional probability of seeing that product appear-
ing given the time series of products that a company acquired
so far. The probability is obtained as the output of a model.
If for a product pi the probability of the generative model M ,
Pr (pi |M,pi−1,pi−2, ...) exceeds a threshold ϕ we assume that the
product pi should be recommended to a given company. Prod-
ucts pi−1,pi−2, ... represent previous products acquired by that
company. As the optimal probability threshold ϕ is not known in
advance we treat it as a parameter of the validation of the model
recommender. For each ϕ and for each company time series we
estimate the average precision and recall measures for the com-
pany time series and all the sliding windows l . Recall shows how
many of the true products that company buys in the future are
retrieved by the recommender. Precision represents the ratio of
the retrieved products that are in the true future product set.

5 EXPERIMENTAL EVALUATION
The experiments are done for 860k aggregated companies and 38
product categories7. Company aggregation is performed using
domestic D-U-N-S® numbers, that is, all company sites in one
country are aggregated. Products are consequently aggregated

6For the experiments, we use the silhouette score implementation available in
Python programming language (Python Software Foundation, https://www.python.
org) package sklearn[21]
7The full list of product categories is available at: http://www.hgdata.com/
Technologies-We-Track.

into a set containing all products available in all sites of a com-
pany. The companies belong to 83 industries, such as “Health
Services”, “Agricultural Services”, etc., which are encoded with
the SIC2 codes.8

First, we estimate the perplexity of initial company representa-
tions A . This is equivalent to the perplexity of the unigram ‘bag
of words’ model. The perplexity is equal to 19.5. The perplexities
of bi- and tri-gram models are also reported in [19]. Their value
is not lower than 15.5, which will be the evaluation baseline.

LSTM. For LSTM,we usedAS company representations, where
products are sorted according to the date of their first appear-
ance in a company. LSTM is applicable for sequential data. The
sequential nature of our data was checked in work [19], where
we demonstrated that 69% of the bigrams and 43% of the trigrams
have frequencies that are statistically significantly higher than
in the case of independent identically distributed products. This
demonstrates that the time dependencies among the products are
indeed strong. The hypothesis testing was based on the binomial
distribution of frequencies of n-grams.

We used 12 different architectures of LSTM model by varying
the number of hidden layers (Nlayers = {1, 2, 3}) and the number
of nodes in the layers (Nnodes = {10, 100, 200, 300}). We used 70%
of the initial corpus for training, 10% for parameter validation and
20% for model testing. We used the LSTM model implementation
of the ‘tensorflow’ package [1]. Training was done for 14 epochs
over the training data. The resulting perplexity values for each
RNN architecture are given in Figure 1.

0 50 100 150 200 250 300
product embedding size

6

8

10

12

14

16

18

20

p
e
rp

le
x
it

y

1 layer
2 layers
3 layers

Figure 1: LSTM average perplexity per product for test
data.

As can be seen from the results, the lowest (best) perplexity
achieved by LSTM model is 11.6 for the test set, which corre-
sponds to 1 hidden layer and 200 nodes per layer. The number
of nodes per layer corresponds to the product embedding size.
LSTM also learned meaningful representations of IT products,
that are illustrated and discussed in [19].

LDA. In the case of LDA, we need to set the number of latent
topics. Altough LDA takes into account the representativeness of
words (products in our case), we consider both raw binary rep-
resentations and TF-IDF representations as input for the model.
The division of the corpus into training and test datasets is done
in the same way as for RNN modeling. The LDA implementation
used is from the gensim package [23]. The perplexity curves of
LDA for both inputs are shown in Figure 2.

8Standard Industrial Classification (SIC) is a taxonomy established by the US Gov-
ernment to classify industries. The full list of SIC encoded industries is available at:
http://siccode.com/.

https://www.python.org
https://www.python.org
http://www.hgdata.com/Technologies-We-Track
http://www.hgdata.com/Technologies-We-Track
http://siccode.com/

2 4 6 8 10 12 14 16
number of latent topics

6

8

10

12

14

16

18

20

p
e
rp

le
x
it

y

input: binary
input: TF-IDF

Figure 2: Average perplexity plots measured on test data
for LDA models.

It appears that the perplexity of raw binary inputs is better
than that of TF-IDF pre-processed input. The leads to the con-
clusion that LDA indeed is able to assign higher weights to the
most representative products and that therefore, no additional
pre-processing is needed. Moreover, lower numbers of hidden
topics, namely. 2, 3 and 4 lead to lower perplexity values, which
vary from 8.5 to 8.9.

The minimum achieved perplexities for each method with the
ranking placing the best methods first are shown in Table 1.

Table 1: Minimum perplexities achieved by each method
varying the parameter settings.

Method Name Min. Perplexity
1 LDA 8.5
2 LSTM 11.6
3 N -grams 15.5
4 Unigram ‘bag of words’ 19.5

Lessons learned.We conclude that, for our company-product
data, LDA models perform better than LSTM models. Note that
LDA models do not take into account the time component of
the company-product space, whereas RNN is built over time
ordered sequences of products. We assume that more sequential
training data might be needed to build more accurate LSTM
models as they have more parameters than LDA models. Indeed,
the number of parameters to estimate in LDA models is equal
to nt + nt ∗ M [3], where nt is the number of latent topics in
the LDA model andM is the vocabulary size of products. In the
case of four latent topics, we have 156 parameters to estimate.
The number of parameters to estimate for LSTM is dominated
by nc ∗ (4 ∗ nc + no) factor [24], where nc is the total number of
memory cells and no is the number of output units. In the case of
one the best performing LSTM settings in our deployment with
100, the number of parameters is lower bounded by 100(4 ∗ 100+
100) = 50000.

Another hypothesis is that the distribution and properties of
hidden structures in company-product data correspond better to
LDA modeling assumptions. The fact that LSTM with only one
hidden layer fits the data the best out of other LSTM architectures
supports this hypothesis.

5.1 Recommendation accuracy
To assess the recommendation accuracy we follow the methodol-
ogy described in Section 4.3. The time span of the product time

series in our deployment range from 1990 till the end of January,
2016. We use a trained model (LDA, LSTM or n-gram based) to
predict products within a sliding windowWr of 12 month start-
ing from January,1 2013, thus, r = 12. The window slides by two
month. This way we obtain 13 accuracy observations. The first
recommendation window starts on January 1, 2013 and finishes
by January 1, 2014 and the last recommendation window starts
on January 1, 2015 and finished on January 1, 2016.

The precision and the recall of the LDA3 is compared to the
LSTM-based recommender and n-gram recommender based on
exact Conditional Heavy Hitters [17], that is another data series
technique capable of capturing time correlations in the data and
predicting future states of the system. The exact Conditional
Heavy Hitters are also exact time-dependent association rules.
Based on the experiments to validate temporal correlations in
product time series described earlier, the depth of the context
for Conditional Heavy Hitters (CHH) is chosen to be 2. Thus,
we study the dependencies on the previous products up to the
second order.

The plot with the average Precision and Recall values, for
different values ϕ of conditional probabilities that are used as a
recommendation threshold is shown in Figure 3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
probability threshold φ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
cc

u
ra

cy
 m

e
a
su

re

Recall_CHH

F1_CHH

Recall_LSTM

F1_LSTM

Recall_LDA3

F1_LDA3

Figure 3: Recall and F1-score with the corresponding con-
fidence intervals for the recommenders based on LDA,
LSTMs and Conditional Heavy Hitters (CHHs).

The average numbers of retrieved and correctly retrieved prod-
ucts by each method with the confidence intervals are shown in
Figure 4.

We can infer (Figure 4) that ϕ should be smaller or equal to
0.2, as for higher values the numbers of products retrieved by
the methods are too low. The accuracy results demonstrate that
the recall of a recommender based on LDA model is consistently
higher than the recall of LSTM and CHH-based recommenders for
the appropriate values of ϕ. The F1-score is also higher for large
range of ϕ. For the values of ϕ ≥ 0.25 the recall values are not
statistically significantly different as their confidence intervals
intersect. Also we note that beyond the probability threshold
ϕ = 0.5 LDA and CHH did not produce any recommendations,
thus, precision values are not defined for this points and recall
values are equal to zero.

The plots on Figures 3 and 4 demonstrate also that the recall
LSTM and CHH is similar as they retrieve similar number of
true future products of a company, but CHH-based recommender

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability threshold φ

0

200000

400000

600000

800000

1000000

N
u
m

b
e
r

o
f

P
ro

d
u
ct

s

correctly retrieved by CHH
retrieved by CHH
correctly retrieved by LSTM
retrieved by LSTM
correctly retrieved by LDA3
retrieved by LDA3
relevant (ground truth)

Figure 4: The average number of retrieved, correctly re-
trieved and relevant products for LDA, LSTM and CHH
with the confidence intervals.

tends to produce more false positives, i.e. it recommends more
products that should have not been recommended. This causes
significant differences in precision.

The task of product recommendations is very hard as it is quite
difficult to capture all the underlying processes that influence
the choice of future models. This is witnessed by the fact that so
far, the best models we tried are only able to reach the values of
precision and recall around 0.25 - 0.43 for ϕ ∈ [0.05, 0.15]. This
means that they are able to capture a true generative model to
some extend. The random generator that produced a product
recommendation with a uniform probability = 1/38 ≈ 0.026 re-
trieved all the products for the thresholds ϕ <= 0.026 and on
average close to zero of the correct products for higher thresh-
olds. The differences between the accuracy measures for LDA
and LSTM, LDA and CHH-based methods are statistically signifi-
cant for most of ϕ values as the corresponding 95% confidence
intervals do not intersect. We have also assessed the accuracies
LDA-based recommender with two and four latent topics, their
performance has been very similar to the results of LDA with the
three latent topics which has been described above. As a future
work we will study the influence of the sliding window size on
the recommendation accuracy.

5.2 Comparison with Matrix Factorization
We also compared the hidden layer methods with one of the
best-performing matrix factorization techniques, Bayesian Prob-
abilistic Matrix Factorization (BPMF), which was introduced in
work [25] and implemented in [28]. As the system requires rank-
ings as an input, we use a ranking transformation of the training
and test data described in the previous section. This means that
if a company has product x , its ranking is equal to 1, otherwise,
its ranking is equal to 0.

The BPMF recommendation results that we obtained for the
product recommendations in our deployment were similar to the
initial results for co-clustering that we reported in Section 3.1. In
the majority of the cases, recommendations produced by BPMF
for a given company include all possible products. The distribu-
tion of the BPMF recommendation scores can be seen in Figure 5.
This is due to the fact that BPMF, and matrix factorization meth-
ods in general, was developed for sparse and imbalanced datasets.

The data in our deployment is relatively dense, and cannot be
reasonably approximated by a low-rank matrix, which is the
basis of BPMF.

BPMF recommendation score
0.90

0.92

0.94

0.96

0.98

1.00

Figure 5: Boxplot of BPMF recommendation score values.

The precision, recall and F1-score values depending on varying
BPMF recommendation score values (in the interval [0.9, 1.0])
are shown in Figure 6.

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
recommendation score threshold

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy
 m

e
a
su

re

Precision_BPMF

Recall_BPMF

F1_BPMF

Figure 6: Accuracy values of Bayesian Probabilistic Matrix
Factorization method.

All the scores for the thresholds of recommendation score
that are lower than 0.94 are the same as for the values 0.91, 0.93
and 0.94. This means that almost for all of the threshold values
the full set of available products is recommended regardless the
previous products purchased by a company. Thus, BPFM does
not produce meaningful recommendation results and does not
provide us with effective features for company-product modeling.
In contrast, additional feature search for products, as done in
LDA and LSTM, leads to high-quality recommendations.

5.3 Company clustering.
As LDA is the best-performing model based on the analysis of
perplexity and recommendation accuracy, we will now study
the suitability of LDA-learned features for clustering. For this
purpose, we build silhouette curves for the features obtained with
the best-performing LDA configurations, that is, with the number
of topics equal to 2, 3 and 4. We then compare these results with
silhouette curves that are built on i) raw binary company-product
representations, ii) raw TF-IDF company representations and iii)

LDA representations with TF-IDF input for 2 and 4 hidden topics.
The results are shown in Figure 7.

0 50 100 150 200 250 300 350 400
number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

si
lh

o
u
e
tt

e
 s

co
re

raw
raw_tfidf

lda_2

lda_3

lda_4

lda_7

tfidf_lda_2

tfidf_lda_4

Figure 7: Silhouette curves.

Note that the higher silhouette score, the better the clusters of
companies are separated. A higher score means that the distances
between companies within one cluster is much lower than the
distances between companies in different clusters. In Figure 7,
we can see that the initial binary representations of companies
are not very discriminative (blue line with stars) as the silhouette
score is the lowest for almost all number of clusters. Clustering on
the initial representation with TF-IDF transformation performs
better then clustering on the initial binary representation, as the
silhouette curve is higher and around 0.6 for a varying number
of clusters. Clustering on LDA-generated representations with
TF-IDF input (tfidf_lda_2 and tfidf_lda_4) performs better than
clustering on raw TF-IDF, especially, when two latent topics are
used. Company representation associated with the best silhou-
ette curves are generated by LDA with raw binary inputs for
the number of latent topics equal to 2, 3 and 4. This result is in
accordance with the perplexity outcomes. This means that LDA
with these numbers of latent topics represents the install base of
the companies the best.

We notice that silhouette scores for lower numbers of clusters
from 5 to 200 are higher for LDA representations with lower
numbers of topics, i.e., 2 topics, whereas higher numbers of topics
(3 or 4) discriminate larger numbers of clusters better.

The t-SNE [26] 2D projections for the product embeddings
based on LDA3 and LDA4 are shown in Figures 8, 9. The original
names of the product categories are shortened for better visu-
alization, e.g., ’SW’ and ‘OS’ stand for software and operating
systems.

It appears that the main products that construct a topic pro-
duce clusters of products. It is also interesting to see that most
of the hardware products are close to each other for both the
LDA3 and the LDA4 representation. These are ‘server_HW’, ‘stor-
age_HW’, ‘HW_other’. Similarly, software products tend to ap-
pear together, for example, ‘commerce’, ‘media’, ‘collaboration’
‘product_lifecycle’, ‘electronics PCs SW’ and ‘retail’. Thus also the
semantic proximity of the products is captured by LDA models.

Lessons learned. The good quality of company clusters and
the meaningful representation of products discussed above mean
that the LDA method is able to automatically infer representative
features both for companies and products in our deployment.

asset_performance

cloud_infrastructure
collaboration

commerce

communication_tech

electronics_PCs_SW

contact_center

data_archiving

storage_HW

DBMS

disaster_recovery

document_management
financial_apps

HR_human_management

HW_other

hypervisor

IT_infrastructure

mainframs

media

midrange
mobile_tech

network_HWnetwork_SW

OS

platform_as_a_service

printers

product_lifecycle

remote

retail

search_enginesecurity_management

server_HW

server_SW

system_security_services

telephony

virtualization_apps

virtualization_platform

virtualization_server

Figure 8: LDA3 product embeddings.

asset_performance

cloud_infrastructure

collaboration
commerce

communication_tech

electronics_PCs_SW

contact_center

data_archiving

storage_HW

DBMS

disaster_recovery

document_management

financial_apps

HR_human_management

HW_other

hypervisor

IT_infrastructure

mainframs

media
midrange

mobile_tech

network_HW
network_SW

OS

platform_as_a_service

printers

product_lifecycle

remote

retail

search_engine
security_management

server_HW

server_SW

system_security_services

telephony

virtualization_appsvirtualization_platform

virtualization_server

Figure 9: LDA4 product embeddings.

6 SALES APPLICATION
We have deployed LDA-based company representations in our
recommendation tool. The company similarity search is based
on LDA company representations with the HG Data Company
dataset as input. Recommendations are built using our internal
datasets. The tool searches for top-k similar companies that are
calculated using their LDA representations based on HG input.
As LDA training is not done in a streaming fashion, it is done
offline and can be retrained on demand or when the concept
shift is taken place. In addition to the global similarity search,
the tool also provides the user with filtering capabilities based
on industry, location, number of employees and revenue.

This tool is currently used for an internal recommendation
system.

7 CONCLUSION AND DISCUSSIONS
In this work, we assessed several data modeling techniques for
product-company modeling, company similarity matching and
recommendation. Companies have been considered to be similar
based on the closeness of the structure of their IT install base.
Assuming intrinsic hierarchies between products, companies
and possibly latent install base structures, we have compared
several techniques from the NLP domain capable of learning this
kind of hidden hierarchical structures. These are unsupervised
modeling techniques, namely, Latent Dirichlet Allocation and
Recurrent Neural Networks. Having evaluated different model
architectures, we demonstrated that LDA with 2, 3 and 4 latent
topics fits our data best. We applied the company features learned
by LDA to determine the top-k similar companies, assessed the
recommendation capabilities of the methods and deployed the
best performers in a recommendation tool.

The results show that though there is clear sequential nature in
the data, still the techniques that does not take time into account
perform the best. The reason of this may be due to the higher
number of parameters to learn in sequential techniques and the
fact that our corpus is not enough to train all the parameters.

As future work, we will gather additional internal data about
the IT structure of companies with proper timestamps and as-
sess other deep neural network architectures starting from lower
levels of product descriptions. We believe that, because of their hi-
erarchical nature, deep neural networks should be able to discover
hidden structures in IT install bases of companies if sufficient
training data is provided.

8 ACKNOWLEDGMENTS
We would like to thank Viktor Kuropiatnyk for helping us make
sense of D-U-N-S® data; Michel Speiser and Daniel Bauer for
their algorithm of company name matching, which we used for
record linkage. KatsiarynaMirylenka also thanksDaniilMirylenka
for the fruitful discussions during the idea crystallization process.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. (2015). http://tensorflow.org/ Software available
from tensorflow.org.

[2] Charu C. Aggarwal. 2015. Data Mining - The Textbook. Springer.
[3] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet

allocation. the Journal of Machine Learning Research 3 (2003), 993–1022.
[4] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio.

2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence

Modeling. CoRR abs/1412.3555 (2014).
[5] Stéphane Clinchant and Florent Perronnin. 2013. Aggregating continuous

word embeddings for information retrieval. ACL 2013 (2013), 100.
[6] Michele Dallachiesa, Besmira Nushi, Katsiaryna Mirylenka, and Themis Pal-

panas. 2011. Similarity matching for uncertain time series: Analytical and
experimental comparison. In Proceedings of the 2nd ACM SIGSPATIAL QUeST.
8–15.

[7] Michele Dallachiesa, Besmira Nushi, Katsiaryna Mirylenka, and Themis Pal-
panas. 2012. Uncertain Time-Series Similarity: Return to the Basics. PVLDB 5,
11 (2012), 1662–1673.

[8] Dun & Brddstreet Inc 2017. Dun & Bradstreet Company. http://www.dnb.com.
(2017).

[9] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. 2016. LSTM: A search space odyssey. IEEE transactions on
neural networks and learning systems (2016).

[10] J. A. Hartigan. 1972. Direct Clustering of a Data Matrix. J. Amer. Statist. Assoc.
67, 337 (1972), 123 – 129.

[11] R. Heckel and M. Vlachos. 2016. Interpretable recommendations via overlap-
ping co-clusters. ArXiv e-prints (April 2016).

[12] HG Data Company 2017. HG Data Company. http://www.hgdata.com. (2017).
[13] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings

of ACM SIGIR. ACM, 50–57.
[14] Tommi S. Jaakkola and David Haussler. 1999. Exploiting Generative Models in

Discriminative Classifiers. In Proceedings of the 1998 Conference on Advances
in Neural Information Processing Systems II. MIT Press, Cambridge, MA, USA,
487–493.

[15] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781
(2013).

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. 2013b. Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. 3111–
3119.

[17] Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh Sri-
vastava. 2015. Conditional heavy hitters: Detecting interesting correlations in
data streams. The VLDB Journal 24, 3 (2015), 395–414.

[18] Katsiaryna Mirylenka, Christoph Miksovic, and Paolo Scotton. 2016a. Appli-
cability of Latent Dirichlet Allocation for Company Modeling. In Industrial
Conference on Data Mining (ICDM’2016). 55–60.

[19] Katsiaryna Mirylenka, Christoph Miksovic, and Paolo Scotton. 2016b. Re-
current neural networks for modeling company-product time series. In 2nd
ECML/PKDD Workshop AALTD.

[20] K. Mirylenka, T. Palpanas, G. Cormode, and D. Srivastava. 2013. Finding inter-
esting correlations with conditional heavy hitters. In IEEE 29th International
Conference on Data Engineering (ICDE’2013). 1069–1080.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[22] Anand Rajaraman and Jeffrey David Ullman. 2011. Data Mining. In Mining of
Massive Datasets. Cambridge University Press, 1–17.

[23] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta, Malta, 45–50.

[24] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term
memory recurrent neural network architectures for large scale acoustic model-
ing. In Fifteenth Annual Conference of the International Speech Communication
Association.

[25] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo. In Proceedings of the 25th
international conference on Machine learning. ACM, 880–887.

[26] L. van der Maaten and G.E. Hinton. 2008. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[27] Michail Vlachos, Francesco Fusco, Charalambos Mavroforakis, Anastasios
Kyrillidis, and Vassilios G Vassiliadis. 2014. Improving co-cluster quality with
application to product recommendations. In CIKM. ACM, 679–688.

[28] Chyi-Kwei Yau. 2017. Recommend. https://github.com/chyikwei/recommend.
(2017).

[29] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

http://tensorflow.org/
http://www.dnb.com
http://www.hgdata.com
https://github.com/chyikwei/recommend

	Abstract
	1 Introduction
	2 Preliminaries and Problem Formalization
	3 Related work
	3.1 Co-Clustering
	3.2 Pattern mining
	3.3 Applicability of NLP Concepts
	3.4 Deep Neural Networks and Product Embeddings
	3.5 Latent Dirichlet Allocation

	4 Modeling Approach
	4.1 Model adaptation and parameter estimation
	4.2 Validation of Company Representations using Clustering
	4.3 Recommendation Capabilities of Generative Models

	5 Experimental evaluation
	5.1 Recommendation accuracy
	5.2 Comparison with Matrix Factorization
	5.3 Company clustering.

	6 Sales Application
	7 Conclusion and Discussions
	8 Acknowledgments
	References

