
Noname manuscript No.
(will be inserted by the editor)

On classifier behavior in the presence of mislabeling
noise

Katsiaryna Mirylenka ·
George Giannakopoulos ·
Le Minh Do ·
Themis Palpanas

Received: date / Accepted: date

Abstract Machine learning algorithms perform differently in settings with
varying levels of training set mislabeling noise. Therefore, the choice of the
right algorithm for a particular learning problem is crucial. The contribution of
this paper is towards two, dual problems: first, comparing algorithm behavior;
and second, choosing learning algorithms for noisy settings.

We present the “Sigmoid Rule” Framework (SRF), which can be used to
choose the most appropriate learning algorithm depending on the properties
of noise in a classification problem. The framework uses an existing model
of the expected performance of learning algorithms as a sigmoid function of
the signal-to-noise ratio in the training instances. We study the characteris-
tics of the sigmoid function using five representative non-sequential classifiers,
namely, Näıve Bayes, kNN, SVM, a decision tree classifier, and a rule-based
classifier, and three widely used sequential classifiers based on Hidden Markov
models, Conditional Random Fields and Recursive Neural Networks. Based on
the sigmoid parameters we define a set of intuitive criteria that are useful for
comparing the behavior of learning algorithms in the presence of noise. Fur-
thermore, we show that there is a connection between these parameters and
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the characteristics of the underlying dataset, showing that we can estimate an
expected performance over a dataset regardless of the underlying algorithm.
The framework is applicable to concept drift scenarios, including modeling
user behavior over time, and mining of noisy time series of evolving nature.

Keywords Classification · Sequential classifiers · Classifier evaluation ·
Handling noise · Concept drift

1 Introduction

Transforming vast amounts of collected – possibly noisy – data into useful in-
formation through the processes of clustering and classification has important
applications in many domains. One example is preference detection of cus-
tomers for marketing. Another example is detection of negligent “providers”
for Mechanical turk and reduction of their behavior on task results. The ma-
chine learning and data mining communities have extensively studied the be-
havior of classifiers in different settings (e.g., [23,52]), however, the effect of
noise on the classification task is still an important and open problem.

The importance of studying noisy data settings is augmented by the fact
that noise is very common in a variety of large scale data sources, such as
sensor networks and the Web, while Machine learning algorithms (both classic
and sequential) perform differently in settings with varying levels of labeling
noise. Thus, there rises a need for a unified framework aimed at studying the
behavior of learning algorithms in the presence of noise, depending on the
specifics of each particular dataset.

Labeling noise is common in cases of concept drift, where a target concept
shifts over time, rendering previous training instances obsolete. Essentially, in
the case of concept drift, feature noise causes the labels of previous training
instances to be out of date and, thus, equivalent to label noise. Drifting con-
cepts appear in a variety of settings in the real world, such as the state of a
free market, or the traits of the most viewed movie. Thus, we expect this work
to offer intuition and tools for meta-learning in similar, noise-prone, real cases
of learning.

Earlier work has shown that the performance1 of a classifier in the presence
of noise can be effectively approximated by a sigmoid function, which relates
the signal-to-noise ratio in training data to the expected performance of the
classifier [19]. We call this fact the “Sigmoid Rule”. The sigmoid rule states
that the expected performance of each learning algorithm can be seen as a
sigmoid function. This function indicates the impact of signal-to-noise ratio
in the training set to the performance of the algorithm, under an assumption
of monotonicity of the change of performance (i.e., when cleaner data are
provided the algorithm is expected to perform better). The added value of this
view is that it allows a single model, with a limited number of parameters,
to be used as an illustration of the behavior of all learning algorithms in a

1When we write performance of an algorithm, we mean the classification accuracy.
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Signal-to-noise

Expected Classification Performance

Fig. 1: An example of a sigmoid function relating signal-to-noise (ratio of mis-
labeled instances) in the training set (horizontal axis) to expected classification
performance (vertical axis).

noisy setting. We illustrate an example of a sigmoid function in Figure 1 and
elaborate on the concept in Section 3.1.

In this work, we study the effect of training set label noise1 on a classifi-
cation task. We further build on this study to achieve two, dual goals:

– We show how to support the comparison between algorithms and their
behavior in a noisy setting. The workflow in this case is as follows: we
select an algorithm; we sample the input for training data; we estimate
a set of parameters (based on the proposed sigmoid rule framework we
discuss below) that characterize the behavior of the algorithm in the pres-
ence of noise; we compare algorithms based on those parameters. Thus,
in Section 4, we examine how much added benefit we can derive from the
sigmoid rule model, by elaborating on the parameters of the sigmoid and
illustrating the connection of each such parameter to the learner behav-
ior. Based on the most prominent parameters we define several dimensions
characterizing the behavior of learning algorithms. We, finally, illustrate
how these dimensions can be used to select learning algorithms in different
settings, based on user requirements.

– We show how to allow for the prediction of algorithm performance, given
dataset attributes related to a specific classification problem. The work-
flow in this case is as follows: we calculate a set of dataset attributes (i.e.,
the number of classes, features and instances and the fractal dimension-
ality [48]); we use estimation (regression) models to predict the expected
performance regardless of the choice of the underlying algorithm. We study
the correlation between dataset characteristics and modeled performance
in Section 7.

Moreover, we extend our study to sequential classification cases, to illus-
trate the broad applicability and usefulness of the “Sigmoid Rule” Framework
(SRF).

The SRF uses a model of the expected performance of learning algorithms
based on a sigmoid function of the signal-to-noise ratio in the training in-

1Throughout the rest of this work we will use the term noise to refer to the label noise,
unless otherwise indicated.
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stances. SRF is specialized for noisy settings, providing more insights regard-
ing the behavior of the algorithms. Essentially, it describes a meta-model (the
SRF sigmoid) on various algorithms, thus making it a special case of meta-
modeling.

Contributions. In summary, we make the following contributions.

– We define a set of intuitive criteria based on the SRF that can be used
to compare the behavior of learning algorithms in the presence of noise.
This set of criteria provides both quantitative and qualitative support for
learner selection in different settings.

– We demonstrate that there is a connection between the SRF dimensions
and the characteristics of the underlying dataset, using both a correlation
study and regression modeling based on linear and logistic regression. In
both cases we discovered statistically significant relations between SRF
dimensions and dataset characteristics. Our analysis shows that these rela-
tions are stronger for the sequential classifiers than for the non-sequential,
traditional classifiers, where the instances are considered to be indepen-
dent.

– Our results are based on an extensive experimental evaluation, using 10
synthetic and 31 real datasets from diverse domains. The heterogeneity
of the dataset collection validates the general applicability of the SRF for
both non-sequential and sequential learners.

The rest of this paper1 is organized as follows. We review the related work
(Section 2) and define the problem studied (Section 3). We then focus on the
sigmoid function and define the SRF dimensions (Section 4), describing their
qualitative value. We test our framework on multiple datasets (Section 6),
statistically analyzing the connection between dataset properties and SRF
dimensions (Section 7) for both sequential and non-sequential classification
tasks. Section 8 provides a summary of the proposed approach and the exper-
imental results. Finally, we conclude in Section 9.

2 Related Work

Since 1984, when Valiant published his theory of learnable [53], setting the
basis of Probably Approximately Correct (PAC) learning, numerous different
machine learning algorithms and classification problems have been devised
and studied in the machine learning community. Given the variety of existing
learning algorithms, researchers are often interested in obtaining the best al-
gorithm for their particular tasks. The algorithm selection is considered to be
a part of the meta-learning domain [21].

According to the No-Free-Lunch theorems (NFL) described in the work [58]
and proven in the works [59,57], there is no overall best classification algo-
rithm, given the fact that all algorithms have equal performance on average
over all datasets. Nevertheless, we are usually interested in applying machine

1A preliminary version of this work has appeared in [39].
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learning algorithms to a specific dataset with certain characteristics, in which
case we are not limited by the NFL theorems. The results of NFL theorems
hint at comparing different classification algorithms on the basis of dataset
characteristics [3], which is the aim of our work in this research direction.

Concerning the measures of performance that help distinguish among learn-
ers, in [3] the authors compared algorithms on a large number of datasets, using
measures of performance that take into account the distribution of the classes,
which is a characteristic of a dataset. The Area Under the receiver operating
Curve (AUC) is another measure used to assess machine learning algorithms
and to divide them into groups of classifiers that have statistically significant
difference in performance [6]. In all the above studies, the analysis of perfor-
mance has been applied for the datasets without extra noise, while we study
the behavior of classification algorithms in noisy settings. In our study, we use
the fact shown by Giannakopoulos and Palpanas [19,20] about concept drift,
which illustrates that a sigmoid function can accurately describe performance
in the presence of varying levels of label noise in the training set. In an early
influential work [30], the problem of concept attainment in the presence of
noise was also indicated and studied in the STAGGER system. In this paper,
we analytically study the sigmoid function to determine the set of parame-
ters that can be used to support the selection of the learner in different noisy
classification settings.

The behavior of machine learning classifiers in the presence of noise is
also considered in the work [27]. The artificial datasets used for classification
were created on the basis of predefined linear and nonlinear regression models,
and noise was injected in the features, instead of the class labels as in our
case. Noisy models of non-markovian processes using reinforcement learning
algorithms and the methods of temporal difference are analyzed in the pa-
per [44]. In the work [10], the authors examine multiple-instance induction of
rules for different noise models. There are also theoretical studies on regres-
sion algorithms for noisy data [51] and works on denoising, like [34], where
a wavelet-based noise removal technique was shown to increase the efficiency
of four learners. Both noise-related studies [51,34] dealt with noise in the at-
tributes. However, we study label-related noise and do not consider a specific
noise model, which is a different problem. The label-related noise corresponds
mostly to the concept drift scenario, as was also discussed in the Section 1.
Moreover, we estimate performance as a function of the signal-to-noise ratio,
contrary to the works described above.

In the work of Nettleton et al. [42], the authors study the effect of dif-
ferent types of noise on the precision of supervised learning techniques. They
address this issue by systematically comparing how different degrees of noise
affect supervised learners that belong to different paradigms. They consider
4 classifiers, namely the Näıve Bayes classifier, the decision tree classifier, the
IBk instance-based learner and the SMO support vector machine. They test
them on a collection of data sets that are perturbed with noise in the input
attributes and noise in the output class, and observe that Näıve Bayes is more
robust to noisy data than the other three techniques. The performance was
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evaluated on 13 datasets. However, no general framework was proposed for
modeling the effect of noise on the performance of the classifiers. In contrast,
we propose the Sigmoid Rule Framework for comparing the behavior of classi-
fiers. We also introduce different dimensions that can be used to formulate the
criteria for comparing the algorithms depending on user needs. Moreover, we
also apply this framework to sequential classifiers, which were not considered
in above studies.

Previous studies on meta-learning and concept drift [29,56] describe ap-
proaches that adjust to changing user interests, taking into account the con-
text [56]. Meta-learning can occur at various levels, e.g., training instance
selection, learning algorithm and parameters selection, window size selection,
based on online measurements. These measurements may include error rates,
distribution of class instances in a window of recent instances, and other related
data or classification traits. However, these works do not explicitly address la-
bel noise, and cannot provide an a priori estimation of classifier performance
in such situations, as in our work.

Recent works on ensemble-based meta-learning (e.g., [13]) deal with local
characteristics of the data and optimize Ensembles of Classifiers (EoCs), but
do less to provide dataset-related and algorithm-independent results, as we do
in this work (Section 7). In [25], the challenges of evolutionary model build-
ing are discussed, including a number of challenges and related approaches
in the literature aimed at (evolving) streaming data in classification tasks. In
this overview, the author disuses (through a multitude of works) a variety of
required characteristics of learning methods, and how evolutionary computa-
tion can contribute towards these characteristics. We believe that our work
is complementary, in that it can provide a basis for future meta-learning and
evolutionary algorithms, where fine traits of learning (e.g., stability of perfor-
mance vs. maximum performance) can prioritize selection in a learning setting.

The SRF view of meta-learning provides another important tool to the
currently available approaches. This view may be even more effective taking
into account references to recurring contexts [43], where the variance of noise
levels may be predictable – after a period of observation – and, thus, the knowl-
edge of an algorithm’s behavior within these levels can constitute important
knowledge. Furthermore, in this work we propose a novel direction of meta-
learning, moving the focus from “accuracy to transparency and trust” [43]. We
achieve this by explaining classification expected behavior under novel, inter-
esting axes of analysis, which take into account not only the absolute values
of the performance of a classifier, but also characterize the behavior of the
performance change from various perspectives.

Other meta-learning literature has focused on the following topics: impact
of the dataset and algorithm features on the learning performance [7], [8], [33],
[46], [18], [41]; identification and handling of different types of noise [7], [46]
and concept drift [46], [18] in the learning setting; meta-learning frameworks
for fine-tuning of the learning systems [7], [8], [47], [1].

Concerning the study of dataset and algorithm features, the works of [7]
and [8] describe a number of dataset features and discuss their usefulness on
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the performance of individual classifiers. However, these works do not include
a systematic analysis of all dataset-classifier pairs. Paper [33] introduces a
dataset characteristic called hardness and demonstrates that it contributes
significantly to the performance of any classifier, which supports our conclusion
that the dataset characteristics can be used to assess classifier performance a
priori. The paper [41] addresses the problem of choosing the parameters of
a learning algorithm that would maximize its performance on a new dataset
based on its characteristics. The proposed solution uses a meta-classifier with
81 features, which include the number of attributes and classes in the dataset,
statistical moments, information theory measures, and others. The work does
not choose the most efficient dataset features. Authors of works [46] and [18]
apply meta-learning – to regression problems and to noise filters respectively.
Similarly to [41], these works also use various dataset statistics as features,
without a systematic analysis of feature importance.

Concerning noise, in our work we study the correlation between labeling
noise (as opposed to feature noise) and the expected performance. Works [46]
and [18] also consider noisy settings. Similarly to our work, paper [46] is fo-
cused on concept drift scenarios. However, it does not provide generally ap-
plicable criteria for selecting the learning algorithm and does not deal with
explicit label noise. Paper [18] discusses the performance of noise filters, but
does not provide a generic model of algorithm behavior in the presence of
noise. In comparison to these works, we additionally address the performance
of sequential models for classification in the presence of noise. We provide
the added value of an estimated analytic connection between noise levels and
performance (described by the sigmoid curve). The sigmoid rule allows an
adaptive meta-learning system to have prior knowledge regarding algorithms
and their expected performance in different levels of noise and under different
requirements (stability, average performance, etc.). Meta-learning frameworks
that can estimate noise levels in a dataset will also benefit from our analysis.

General meta-learning frameworks are described in detail in works [7]
and [8]. Efficiency modifications for fast discovery of optimal algorithms are
proposed in work [1]. In our work we focus on a systematic analysis of the
performance of classifiers depending on the dataset and classifier features, and
the level of noise. A future study can adopt the architecture of meta-learning
framework for classifier selection in noisy settings. Work [47] proposes collabo-
rative filtering approach for meta-learning, arguing that the relevant algorithm
and dataset features can be chosen while applying collaborative filtering. It
is not clear how this approach will perform in the case of concept drift sce-
nario and in the case of multi-criteria performance objectives. In this work we
analyze the performance of a classifier in the environment with varying label
noise and study the effect of dataset characteristics on performance behavior.
We leave the comparison of meta-learning platforms for future work.

Sequential data and especially time series data collected from sensors are
often affected by noise. That is, the quality of the data may be decreased
by errors due to limitations in the tolerance of the measurement equipment.
Sequential classification based on Markov chains with noisy training data is
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considered in the work of Dupont [14]. The paper shows that smoothed Markov
chains are very robust to classification noise. The same paper discusses the re-
lation between the classification accuracy and the test set perplexity that is
often used to measure prediction quality. However, unlike our work, no specific
formalization is proposed for analyzing the effect of different noise levels on
the performance of the classifier. Development of such formalization is becom-
ing increasingly important as sequential and time series data classification are
applied in diverse domains, such as financial analysis, bioinformatics and infor-
mation retrieval. For example, a recent survey [60] considers various methods
of sequential classification in terms of methodologies and application domains.
The methods for sequential classification we focus on are introduced in the
works [45], [49] and [15], which describe Hidden Markov models, Conditional
Random Fields, and Recurrent Neural Networks correspondingly. The tech-
niques described in studies [40], [38], such as Conditional Heavy Hitters, allow
estimating sequential models in real time. The efficiency of such techniques en-
ables the applicability of sequential classification to sensor data analysis and
moving trajectories.

3 Problem Statement and Preliminaries

We consider settings where a classification task is performed under varying
levels of label noise, similarly to a concept drift scenario, where the labels are
gradually changing and the noise level is not known in advance. Such settings
are common and have been detailed in previous works (e.g., see definition of
the “problem of the demanding lord” [20], where a user changes her preferences
gradually over time and an automatic system is called to adapt to this change).

Our goal is to recommend a classifier that is beneficial for a given dataset,
based on custom algorithm optimality criteria (e.g., stability under noise vs.
maximum possible performance). The only required knowledge related to the
task is on characteristics of the dataset, such as the number of classes, number
of attributes, and intrinsic dimensionality.

More formally, we define a training set as T. Part of the instances in this
dataset have true labels. We define this set of instances S and term them
“signal” instances. The rest of the instances have noisy (i.e., erroneous) labels.
We define this set as N and term them “noisy” instances. Hence, S ⊆ T, N ⊆ T
and S∪N = T while S∩N = ∅. Then S = |S| and N = |N| represent the signal
magnitude and the noise magnitude of a training set T, respectively. We also
allow S = ∅ ⇒ S = 0, N = T⇒ N = |T|, when all the training set is not valid
any longer because a shift has just occurred. Correspondingly, N = ∅ ⇒ N = 0,
S = T⇒ S = |T|, when no noise is induced in the training set.

Given the above definitions, we define the signal-to-noise ratio Z of a given
moment in time:

Z = log(1 + S)− log(1 +N) = log
1 + S

1 +N
, (1)
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Table 1: The definitions of the main concepts.

Concept Definition

Signal-to-Noise Ratio
the ratio of correctly labeled training instances, to the incor-
rectly labeled training instances

Performance
a measure of the accuracy of an algorithm in a noisy training
setting. In a classification problem, we use accuracy

Characteristic Trans-
fer Function (CTF)

is a function connecting the signal-to-noise in the training
dataset to the expected performance of a learning algorithm

Sigmoid Rule Frame-
work (SRF)

is an approach that models the expected performance of a
learning algorithm, using a sigmoid function as the CTF for
any algorithm

where log(·) represents the natural logarithm. We add one to signal and noise
magnitudes so that the logarithm is defined for their zero values.

3.1 Characteristic Transfer Function

In order to describe the performance of a classifier we use the “sigmoid rule”,
which was introduced and discussed in previous studies [19,20]. The sigmoid
rule uses a function that relates signal-to-noise ratio of the training set to the
expected performance of a learner. This function is called the characteristic
transfer function (CTF) of the learning algorithm. In this work, we also refer
to it as the sigmoid function of the algorithm, and use the terms CTF and
sigmoid function interchangeably.

Given that an algorithm has a minimum performance of m and a max-
imum performance of M for a given domain of signal-to-noise values, then
the function that describes the average performance f as a function of the
signal-to-noise ratio Z (Equation 1), is of the form [19,20]:

f(Z) = m+ (M −m)
1

1 + b · exp(−c(Z − d))
, (2)

where m ≤ M , m,M ∈ [0, 1], b, c ∈ R+, d ∈ R are the parameters of the
sigmoid function. The number of parameters can be reduced, though their
presence allows for a more accurate estimation of the performance of a classi-
fier, as has been empirically shown [20]. An example of a sigmoid function can
be seen in Figure 2. The definitions of the main concepts used in the paper
are given in Tabel 1.

The basis of the CTF lies on Probably Approximately Correct learning [24,
53] and, more specifically, on the expectation that – in PAC learnable settings
– enough (randomly drawn) samples can help a system select a hypothesis
identifying concepts. Thus, in PAC learning, more correctly labeled instances
decrease the probability of error, reaching a limit ε. In the CTF modeling of
learning we have tried to model what happens in the presence of mislabeled
instances, while keeping the limit cases aligned to PAC learning.
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Let us consider the case where a set of concepts C is (PAC) learnable. This
means that, provided with enough learning instances, the system will end up
learning (a hypothesis H identifying) the concepts. In this case, the selected,
correctly labeled instances that were input to the learning system as training
are all signal, with no noise. The error of this system tends to be below ε.

Now, let us consider the case where there exists a “false labeling” prob-
ability 1 ≥ Pf ≥ 0, when the input instances are provided to the learner.
These instances constitute a population of training instances that do not re-
flect the original, true instance distributions for C. In this case, the system
will (try to) learn a different set of concepts C′, which is a function of the
distributions of C and the “false concepts” set distributions F 6= C. It is easy
to deduce that, if the system learns C′, i.e., it forms a hypothesis H ′ 6= H
that can map instances to C′ with an error probability below ε after enough
instances, then a portion of these mappings/predictions will stand in C′ but
not in C. The more mislabeled instances are provided as input to the learner,
the higher the probability that the predictions will be wrong, with respect to
C. In the extreme case that all instances of C are provided as inputs and the
learner learns all the space, the probability of error can be exactly Pf , since
the learner will have mistakenly and perfectly learned all the falsely-labeled
instances. If all the input instances are provided mislabeled, then the learner
will have learned the full set of false concepts C′ = F and C will have no
effect on the learning. In this case the performance of the system with respect
to C will be minimum. Different values of Pf are expected to vary the error
rates between the minimum and the maximum value. If we are interested in
the average error rate (and dually the performance) of the learner over several
experiments in the presence of noise, we can only assume that, after enough
tries, increasing Pf will lead to higher error ε′ = ε + Pf > ε, Pf > 0. At this
point we provide an alternative view of Pf : it is directly connected the per-
centage of noise N = Pf · |T| and signal S = (1 − Pf )|T| in a signal-to-noise
ratio Z from Equation 1, where T is a training set as is introduced above.

To summarize, the intuition behind the sigmoid in Equation 2 is based on
the fact that a (non-trivial) learning algorithm starts to perform well after a
certain ratio of good to bad examples has been observed. From that moment
on, the performance of the algorithm constantly improves (on average) as the
ratio is improved (monotonicity assumption), until the point where the best
performance is reached. Then, no matter how much the ratio of good to bad
examples increases, there is little change, because the algorithm cannot do
much better, since it has learned the input concepts (and also possibly due to
its generalization property, where such a property is applicable). We consider
the CTF to be characteristic of an algorithm for a given dataset (i.e., set
of concepts, instance and hypothesis space). It has been demonstrated that
the sigmoid can be estimated from training sets of varying Z and, then, it
can be used as a known function for a given algorithm [20]. In this work, we
demonstrate that the characteristics of a dataset (e.g., Vapnik-Chervonenkis
or VC dimension [54]) have a strong influence over the sigmoid parameters
(refer to Section 6). This property of the sigmoid allows reusing sigmoids
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across datasets with similar characteristics and suggesting the most promising
learner for a new dataset, based on custom optimality criteria.

The behavior of different machine learning algorithms in the presence of
noise can be compared along several axes of comparison, based on the param-
eters of the sigmoid function. The parameters related to performance include:

(a) the minimal performance m,
(b) the maximal performance M ,
(c) the span of the performance range ralg = M −m.

With regard to the sensitivity of performance to the change in the signal-to-
noise ratio, we consider:

(a) within which range of noise levels, change in the noise leads to significant
change in performance;

(b) how we can tell apart algorithms that improve their performance even
when the signal-to-noise levels are low, from those that only improve in
high ranges of the signal-to-noise ratio;

(c) how we can measure the stability of performance of an algorithm against
varying noise;

(d) at what noise level an algorithm reaches its average performance;
(e) whether reducing the noise in a dataset is expected to have a significant

impact on the performance.

To answer these questions we perform an analytic study of the sigmoid
function of a particular algorithm by the means of traditional function analy-
sis. This analysis helps to devise measurable dimensions that can answer our
questions about the parameters related to performance of classifiers.

In the next section we introduce the Sigmoid Rule Framework (SRF) which
proposed several axes for algorithm comparison, based on the CTF. The set
of parameters of the CTF and the proposed SRF is summarized in Table 2 for
quick reference.

4 The Sigmoid Rule Framework

We investigate the properties of the sigmoid function (Equation 2) in order
to determine how each of the parameters m, M , b, c, and d affects the shape
of the sigmoid, and how this translates to the expected performance of the
learning algorithm. We start by a direct analysis of the sigmoid function and
its parameters. In Figure 2 we see an illustration of a sigmoid, where we have
indicated the points related to the curve parameters. The reader is referred to
Table 2 for a summary of the symbols.

The domain of the sigmoid is, in the general case, Z ∈ (−∞,+∞). The
range of values is (m,M), as also can be seen on Figure 2. Then, we consider
the derivatives of the sigmoid function in order to study its characteristics.

Since the first order derivative is always positive, f ′(Z) > 0 for ∀Z ∈
(−∞,+∞), the function f(Z) is monotonically increasing, which corresponds
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Table 2: Notation of sigmoid-related variables and SRF dimensions.

Parameter Description
Sigmoid-related variables

S signal magnitude in training set
N noise magnitude in training set
Z signal-to-noise ratio

m, M , b, c, d parameters of sigmoid
f(Z) sigmoid function
Zinf point of inflection of sigmoid (zero of the 2nd derivative)

Z
(3)
1,2 zeroes of the 3d derivative of sigmoid

ds distance between Zinf and Z
(3)
1 , characterizes the slope of sigmoid

[Z∗, Z∗] active noise range of an algorithm, where performance changes significantly
f−1(·) inverse sigmoid function

SRF dimensions
m minimal performance of a classification algorithm
M maximal performance of a classification algorithm
ralg span of the performance range
c slope indicator of sigmoid function of an algorithm

dalg width of the active area of algorithm performance
ralg/dalg performance improvement of an algorithm over signal-to-noise ratio change

to the monotonicity assumption made in [20]. For the second order derivative,
f ′′(Z), it holds that f ′′(Z) = 0 if Z = d + 1

c log b, and the point Zinf =
d + 1

c log b is the point of inflection, which shows when the curvature of the
function changes its sign.

In the case of the sigmoid, the point of inflection, Zinf (the middle point in
Figure 2), is the point of symmetry, corresponding to the average performance
of the algorithm. Furthermore, Zinf indicates the shift of the sigmoid with
respect to the origin, which is equal to d+ 1

c log b. So, the shift of the sigmoid
and the average performance for the signal-to-noise range depends on three
parameters: b, c, and d.

Learning algorithms can be compared based on the slope of their sigmoids.
The slope of the sigmoid reflects the improvement of an expected performance
of an algorithm per change in the signal-to-noise ratio. To estimate the slope,
we use the distance ds between the point of inflection Zinf (zero of the second
derivative) and the zeros of the third derivative (both zeros of the third deriva-
tive are at the same distance from the point of inflection). Figure 2 shows the
sigmoid curve along with its points of interest.

The zeros of the third order derivative are Z
(3)
1,2 = d − 1

c log 2±
√
3

b . Thus,

we have for ds: ds = Z
(3)
1 − Zinf = Zinf − Z(3)

2 = 1
c log 1

2−
√
3
. The larger this

distance is, the more expanded the sigmoid curve is. Since log 1
2−
√
3
≈ 1.32, ds

is in inverse proportion to parameter c: ds = a
c , where a ≈ 1.32. We find that

the parameter c directly influences the slope of the sigmoid curve. We term c
as the slope indicator of the CTF. Figure 3 depicts sigmoids with different c
values, illustrating gradual and sharp slopes of the sigmoid function.
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tially the point where the curve changes significantly).
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Fig. 3: Varying c parameter. c = 1 (left), c = 3 (right). Other parameters are
the same: m = 0, M = 1, b = 2.5, d = 3.

In the following section, we formulate and discuss dimensions that charac-
terize the behavior of algorithms, based on the axes of comparison discussed
above.

4.1 SRF Dimensions

In this section we determine several SRF dimensions based on the sigmoid
properties, in addition to m, M , ralg, and c, discussed in Section 4. We define
active noise range as the range [Z∗, Z

∗] in which the change in noise induces
a measurable change in the performance. In order to calculate [Z∗, Z

∗] we
assume that there is a good-enough performance on a given task, approaching
M for a given algorithm. We know that f(Z) ∈ (m,M), and we say that the
performance is “good enough” if f(Z) = M−(M−m)∗p, p = 0.051. We define

1Instead of 0.05, one can use any value close to 0, describing a normalized measure
of distance from the optimal performance. In the case of p = 0.05, the distance from the
optimal performance is 5%.
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the learning improvement of the algorithm as the size of the signal-to-noise
interval in which f(Z) ∈ [m+ (M −m) ∗ p,M − (M −m) ∗ p]. Then, using the
inverse

f−1(y) = d− 1

c
log

(
1

b

(
M −m
y −m

− 1

))
,

where y = f(Z), we calculate the points Z∗ and Z∗, which respectively are
the bottom and the top points in Figure 2 for a given p. We term the distance
dalg = Z∗−Z∗ as the width of the active area of the machine learning classifier
(see Figure 2). Then we define a ratio between the width of the active area
and the span of the performance range

ralg

dalg
, which describes (and is termed

as) the learning performance improvement over signal-to-noise ratio change.
In the following paragraphs we describe how this analysis allows us to

compare the performance of learning algorithms in the presence of noise.

5 Using SRF to Compare Algorithms

Given the performance dimensions described above, we can compare algo-
rithms as follows. For performance-related comparison we can use minimal
performance m, maximal performance M , and the span of performance range
ralg. Algorithms not affected by the presence or absence of noise will have a
minimal ralg value. In a setting with a randomly changing level of noise, this
parameter is related to the possible variance in performance. Related to the
sensitivity of performance to the change of the signal-to-noise ratio, we can
use the following dimensions.

1. The active noise range [Z∗, Z
∗], which shows how early the algorithm starts

operating (measured by Z∗) and how early it reaches good-enough perfor-
mance (measured by Z∗). We say that the algorithm operates when the
level of noise in the data is within the active noise range of the algorithm.

2. The width of the active area dalg = Z∗ − Z∗ of the algorithm, which
is related to the speed of changing performance for a given ralg in the
domain of noise. A high dalg value indicates that the algorithm varies
its performance in a broad range of signal-to-noise ratios, implying less
performance stability in an environment with heavily varying degrees of
noise.

3. The parameter c of the sigmoid function (slope indicator), which is related
to the distance ds = 1.32/c. The distance has similar properties as the
inversion of ralg/dalg, but it is independent of the predefined parameter
p, which shows the percentage of performance considered as good-enough
for a given task and is not directly connected to the active noise range. ds
reflects the change in the slope of the function. If c is large, then ds is small
and indicates higher stability of the algorithm in the presence of noise, and
vice versa.

4. The point of inflection Zinf , which shows the signal-to-noise ratio for which
an algorithm gives the average performance. The parameter can be used
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to choose the algorithm that reaches its average performance earlier in a
noisy environment, or the algorithm whose speed of improvement changes
earlier.

A parameter related to both performance and sensibility is the learning
performance improvement over signal-to-noise ratio change, ralg/dalg. It can
be used to determine whether reducing the noise in a dataset is expected
to have a significant impact on the performance. An algorithm with a high
value of ralg/dalg would imply that it makes sense to put more effort into
reducing noise. Furthermore, using this dimension a decision maker can choose
more stable algorithm, when the variance of noise is known. In this case, the
algorithm with the lowest value of ralg/dalg should be chosen in order to limit
the corresponding variance in performance.

Based on the above discussion, we favor the classifiers with the following
properties:
– higher maximal performance M ,
– larger span of performance range ralg,
– higher learning performance improvement over signal-to-noise ratio change
ralg/dalg,

– shorter width of the active area of the algorithm dalg, and
– larger slope indicator c.

We expect to get high performance from an algorithm if the level of noise in
the dataset is very low, and low performance if the level of noise in the dataset
is very high. Decision makers can easily formulate different criteria, based on
the proposed dimensions (summarized in Table 2).

Based on the above, the workflow to select an algorithm given some user
preference is as follows: we select an algorithm; we sample the input data for
training; we estimate the SRF parameters; we repeat the process for differ-
ent algorithms; finally, we analyze the SRF parameters in order to select the
algorithm with the most appropriate behavior, i.e., the one that best matches
the user preferences.

6 Experimental Evaluation

In the following paragraphs we describe the experimental setup, the datasets
used, and the results of our experiments. We first consider non-sequential and
then sequential classifiers.

6.1 Experimental Setup for Non-Sequential Classifiers

In our study we applied the following machine learning algorithms, imple-
mented in Weka 3.6.3 [22]:
(a) IBk – k-nearest neighbor classifier;
(b) Näıve Bayes classifier;
(c) SMO – support vector classifier (cf. [28]);



16 Katsiaryna Mirylenka et al.

Classes 

low high 

<7 ≥7 

Attributes 

low high 

<10 ≥10 

medium 

Instances 

low high 

<50
0 ≥5000 

50
0≤

x<
50

00
 

Fig. 4: Dataset grouping labels.

1 2 3 4 5 6

0
20

40
60

80

Fractal Dimension

N
um

be
r o

f f
ea

tu
re

s

●

●

●

●

●

●
●

●

●
●

●

5 6 7 8 9 10

5
10

15
20

25

Log of instance count

N
um

be
r o

f c
la

ss
es

●

●

●

●

●

●

●

●

●

●

●

Fig. 5: Distribution of the dataset characteristics. Real data: triangles, Artifi-
cial: circles.

(d) NbTree – a decision tree with Näıve Bayes classifiers at the leaves;
(e) JRip – a RIPPER [11] rule learner implementation.

We have chosen representative algorithms from different families of classi-
fication approaches, covering popular classification schemes. The experiments
were performed on a 2.4GHz machine with 4GB RAM.

We used a total of 24 datasets for our experiments. Most of the real
datasets come from the UCI machine learning repository [17], and one from
the study [19]. Fourteen of the dataset are real, while ten are synthetic. All the
datasets are divided into groups according to the number of classes, attributes
(features) and instances in the dataset, as shown in Figure 4.

There are 12 possible groups that include all combinations of the param-
eters. Two datasets from each group were employed for the experiments. We
created artificial datasets in the cases were real datasets with a certain set of
characteristics were not available. The distribution of the dataset character-
istics is illustrated in Figure 5. The traits of the datasets illustrated are the
number of classes, the number of attributes (features), the number of instances,
and the estimated intrinsic (fractal) dimension.

Table 3 contains the description of the datasets and their sources.
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Table 3: The description of the datasets used. x1 is a number of classes, x2 is
the number of attributes, x3 is the number of instances, and x4 is the fractal
dimensionality of a dataset.

Dataset
Parameters

# of classes # of attr # of inst fract dim
x1 x2 x3 x4

1. Wine1 3 13 178 3.63
2. Australian Credit Approval2 2 14 690 2.86
3. real from [19] 4 6 230 1.85
4. Yeast3 10 8 1484 4.73
5. artificial 5 12 335 3.04
6. artificial 9 16 450 3.52
7. artificial 10 5 310 2.98
8. artificial 7 9 637 3.39
9. artificial 8 3 352 0.76
10. Breast Cancer Wisconsin4 2 9 699 3.51
11. Breast Tissue5 6 9 106 3.37
12. Letter Recognition6 26 16 20000 5.28
13. artificial 6 5 390 4.65
14. artificial 3 7 10287 4.51
15. artificial 2 3 6452 3.27
16. Vehicle Silhouettes7 4 18 846 4.62
17. MAGIC Gamma Telescope8 2 10 19020 5.99
18. Waveform9 3 21 5000 6.55
19. Shuttle10 7 9 14500 5.51
20. artificial 9 5 10845 5.61
21. Libras Movement11 15 90 360 5.68
22. Image12 7 19 2100 5.39
23. Wine Quality13 7 11 4898 5.43
24. artificial 7 11 6762 6.01

We build ten artificial datasets using the following procedure. Having ran-
domly sampled the number of classes, features and instances, we sample the
parameters of each feature distribution. We assume that the features follow
the Gaussian distribution with mean value (µ) in the interval [−100, 100] and
standard deviation(σ) in the interval [0.1, 30]. The µ and σ intervals allow

1See http://archive.ics.uci.edu/ml/datasets/Wine
2See http://archive.ics.uci.edu/ml/datasets/Statlog+%28Australian+Credit+Approval%29
3See http://archive.ics.uci.edu/ml/datasets/Yeast
4See http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29
5See http://archive.ics.uci.edu/ml/datasets/Breast+Tissue
6See http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
7See http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
8See http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
9See http://archive.ics.uci.edu/ml/machine-learning-databases/waveform/

10See http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/shuttle/
11See http://archive.ics.uci.edu/ml/datasets/Libras+Movement
12See http://archive.ics.uci.edu/ml/machine-learning-databases/image/
13See http://archive.ics.uci.edu/ml/datasets/Wine+Quality

http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Australian+Credit+Approval%29
http://archive.ics.uci.edu/ml/datasets/Yeast
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Tissue
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
http://archive.ics.uci.edu/ml/machine-learning-databases/waveform/
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/shuttle/
http://archive.ics.uci.edu/ml/datasets/Libras+Movement
http://archive.ics.uci.edu/ml/machine-learning-databases/image/
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
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overlapping features across classes. The description of the parameters of the
generated datasets is shown in Table 3.

The noise was induced as follows. We created the stratified training sets,
equal in size to the stratified test sets. To induce noise, we created noisy ver-
sions of the training sets by mislabeling the instances. Using different levels ln
of noise, ln = 0, 0.05, ..., 0.951, a training set with ln noise is a set with fraction
ln of mislabeled instances. Hence we obtained 20 versions of the datasets with
varying noise levels.

The equal percentages of instances from different classes (for stratification)
were put into test and training sets (as in the original dataset with 0% of noise),
using the following procedure:

1. Calculate the number N of observations in the original dataset; the number
of observations in the test or training set should be the integer part of N/2;

2. Calculate the percentages of each class in the original dataset;
3. Calculate the number of observations from each class that should be in

the training and test sets based on the percentages from the previous step
(rounding the numbers if necessary);

4. Divide the observations according to the classes to obtain “class datasets”,
i.e., sets of instances with only one class per set;

5. From each “class dataset”, sample observations (based on the results of
step 3) for the training set, and place the remaining observations of each
“class dataset” into the test set;

6. Make ”noisy” training datasets from the original training dataset with
different levels ln of noise.

7. Get the performance of the model trained on each ”noisy” dataset ln =
0, 0.05, ..., 0.95 and tested on a noise-free stratified test set.

Given the performance of a classifier for a particular dataset, we estimate
the parameters of the sigmoid function for each algorithm-dataset pair using
a genetic algorithm (described in detail in Appendix A.1). The idea is that
the algorithm tries to find parameters that minimize the distance between
the distribution of values of the real data to that of the estimated sigmoid.
To this end, we use as a fitness measure a function of the D statistic of the
Kolmogorov-Smirnov test [36], which measures the maximum distance between
the Cumulative distribution functions of the two sample sets. Having the sets
of estimated sigmoids describing the performance for particular algorithms
and datasets with certain characteristics, we can reason about the properties
of the algorithms along the SRF dimensions.

6.2 Experimental Setup for Sequential Classifiers

We now consider sequential datasets, where the order of instances is important.
Using these datasets, we study whether sequential classifiers adhere to the

1We note that high levels of noise such as 95% are often observed in the presence of
concept drift, e.g., when learning computer-user browsing habits in a network environment
with a single IP, and several different users sharing it.
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Fig. 6: Linear chain CRF architecture.

sigmoid rule framework. The main difference to the non-sequential case is
that for the classification task we also use the information about the previous
instances in addition to the features of the current instance. For sequential
data, we apply three classification algorithms based on Hidden Markov Models
(HMM) [45], Conditional Random Fields (CRF) [32], and Recurrent Neural
Networks (RNN) [15].

For the experiments, we consider the whole sequence of observations as an
instance. For each algorithm, we define the order of dependency, and consider
sequences of the length corresponding to that order. For the implementation
of these sequential classifiers, we use the jahmm [26], Mallet [37], and Weka
[22] libraries for HMM, CRF, and RNN, respectively. The experiments and the
libraries are implemented in Java, and the classification algorithms are called
as library functions. The experiments were performed on a 2.67GHz machine
with 4GB RAM.

Hidden Markov Models. For HMM-based classification, we perform the
experiments in two settings by using HMMs of the 3rd and the 4th order. In
Figures 8a and 8b, we depict the sigmoids of the HMM algorithm for the
“Robot walk 4” dataset. The green solid line corresponds to the true mea-
surements of the performance of the HMM-based classifier for different values
of signal-to-noise ratio Z, while the dashed red line corresponds to the esti-
mated sigmoid, the parameters being assessed with a generic algorithm (see
Appendix A.1).The Pearson’s correlation test between the obtained perfor-
mance and the estimated performance based on the sigmoid function shows
statistically significant correlation values, with coef > 0.99 for significance
level α = 0.01. This holds for both the first and the second setting (the third
and the fourth order models, correspondingly). Similar results were obtained
for the rest of the datasets and sequential learners. These results confirm that
the sequential learners adhere to the “Sigmoid Rule” framework.

Conditional Random Fields. To better cover sequential classifiers, we em-
ploy and study linear and quadratic CRFs. These go beyond class labels, which
HMMs use, and also take into account data attributes to determine a class.
We experiment with CRF in two different settings, according to the order of
the connection between the instances. To label an unseen instance, the most
likely Viterbi labeling y∗ = arg maxy p(y

(i)|x(i)) is computed. In the first set-
ting we consider a linear chain CRF, in which an instance depends only on
the previous one, as depicted in Figure 6. Since we consider only label noise,
we induce noise only in the labels of the instances. In the second setting, we
consider the model of the second order, where an instance depends on the two
previous instances. As an example, the sigmoids of the CRF algorithm for the
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“Robot walk 4” dataset are shown in Figures 8c and 8d. Like in the case with
HMMs, the sigmoids fit the performance curves of the CRF classifier well for
all the datasets.

Recurrent Neural Networks. Whereas HMM takes into account only the
data labels of the sequence, and CRF uses both class labels and the attributes
of the previous instances in the sequence in order to classify the current in-
stance, RNN uses the attributes of the current instance, and only the label of
the previous instances. For RNN-based classification, we provide the previous
label as input to calculate the output of the current instances (see Figure 7), as
in the work [4], and we use two settings with 2nd and 3rd order dependencies:
in the first setting, the two previous labels are used, while in the second set-
ting the three previous labels are used. The sigmoids of the RNN algorithms
for the “Robot walk 4” dataset are shown in Figures 8e and 8f. According to
Pearson’s correlation test for setting 1 (coef = 0.9947, p − value = 0.0053)
and setting 2 (coef = 0.9962, p− value = 0.0038) between the obtained per-
formance and estimated sigmoid function, we can say that the classifier based
on RNN also follows the “Sigmoid Rule”. As in the previous cases of HMMs
and CRFs, the sigmoids fit well the performance curves for all the datasets
for the RNN classifier. Thus, the “Sigmoid Rule” fits RNN-based classifiers as
well.

6.2.1 Datasets

We used 18 real datasets for our sequential experiments. All the datasets
contain time series where the instances appear in the chronological order. The
label of the last observation is assigned to the sequence to imply causality.

The distribution of the characteristics of these datasets is illustrated in
Figure 9. These characteristics are: the number of classes, the number of at-
tributes, the number of instances, and the largest lag value that corresponds to
significant autocorrelation of the labels. Autocorrelation is a linear dependence
of a variable with itself at two points in time [5]. We use the autocorrelation
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(a) Sigmoid CTF of HMM 1st setting.
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(b) Sigmoid CTF of HMM 2nd setting.
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(c) Sigmoid CTF of CRF 1st setting.
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(d) Sigmoid CTF of CRF 2nd setting.
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(e) Sigmoid CTF of RNN, 1st setting.
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(f) Sigmoid CTF of RNN, 2nd setting.

Fig. 8: Sigmoid CTF of the two settings of the HMM, CRF and RNN-based
classification algorithm for the “Robot walk 4” dataset, indicating different
algorithm behaviors. Green solid line: true measurements, dashed red line:
estimated sigmoid.

function (ACF) implemented in R1 to calculate autocorrelation with maxi-
mum lag equal to 50 for all datasets. We choose the first lag that gives the
smallest autocorrelation falling out of the significance band, as shown, for ex-
ample, in Figure 10 for the Pioneer gripper dataset, where we chose lag equal
to 37.

Description of the datasets are shown in Table 4.

1http://stat.ethz.ch/R-manual/R-patched/library/nlme/html/ACF.html

http://stat.ethz.ch/R-manual/R-patched/library/nlme/html/ACF.html
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Fig. 9: Distributions of the characteristics of sequential datasets.
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Fig. 10: Autocorrelation plot of the Pioneer gripper dataset.

We induce noise into sequential data in a way similar to the independent
data. We randomly split all data into equally sized training and test parts.
Mislabeled instances are in the training data only. We induce varying levels of
noise from 0% to 100% as follows. The noisy version of a class Ci of a training
set is created by selecting the level of noise ln, and replacing some instance
with an instance of another class with probability ln. Then sequential classifiers
are trained using the training data with various levels of noise, and are used
to predict the test data. Given the classification of all the test instances, we

1Dataset from [19].
2See http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+

Smartphones
3See http://archive.ics.uci.edu/ml/datasets/Pioneer-1+Mobile+Robot+Data
4See http://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data
5See http://archive.ics.uci.edu/ml/datasets/Diabetes
6See http://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
7See http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
8See http://archive.ics.uci.edu/ml/datasets/CalIt2+Building+People+Counts
9See http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring

10See http://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
11See http://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Pioneer-1+Mobile+Robot+Data
http://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data
http://archive.ics.uci.edu/ml/datasets/Diabetes
http://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
http://archive.ics.uci.edu/ml/datasets/CalIt2+Building+People+Counts
http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
http://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
http://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor
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Table 4: Dataset descriptions. x1 is the number of classes, x2 is the number
of instances, x3 is the autocorrelation lag, and x4 is the number of attributes
(features).

Dataset
Parameters

# of classes # of inst autocorr lag # of attr
x1 x2 x3 x4

1. Climate1 4 230 16 6
2. Human Activity2 6 408 26 561
3. Pioneer gripper3 7 697 37 36
4. Robot walk 44 4 800 22 4
5. Diabetes5 20 1327 3 2
6. Ozone Level 1 hour6 2 1500 4 72
7. Pioneer turn3 15 2324 50 36
8. Ozone Level 8 hour6 2 2534 5 145
9. Opportunity7 4 3000 50 218
10. Robot walk 24 4 4000 30 2
11. Robot walk 244 4 5434 31 24
12. Pioneer move3 35 6129 50 36
13. Callt28 2 10082 41 1
14. Electric 21 2 10000 17 6
15. PAMAP9 3 16000 50 52
16. Electric 31 2 27552 17 8
17. Daphnet Freezing10 3 38774 50 9
18. Dodger11 2 50400 34 2

compute the overall performance of the algorithm using classification accuracy:

P =
#CorrectClassifications

#TotalClassifications

We perform repeated random sub-sampling validation with 20 splits by
randomly choosing half of the instances as training data and the remaining
instances as test data, and calculate the average performance of the classifier.
For the sequential datasets the correct order of the instances is kept for both
training and test phases. The parameters of the corresponding sigmoid are
assessed using the values of signal-to-noise ratio and corresponding average
performance levels.

In the following sections we consider sequential classifiers in more detail.

6.3 Experiments on Classifier Behavior Comparison

We perform experiments of “noisy” classification using repeated random sub-
sampling validation12 with 10 splits per algorithm per dataset per noise level,
and calculate the average performance for each setting. Repeated random
sub-sampling is a common technique of cross-validation, in which a dataset is
randomly split into the training and testing parts and the accuracy results are

12Repeated random sub-sampling validation is also known as Monte Carlo cross-
validation [31].
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(a) Sigmoid CTF of the SMO algorithm. (b) Sigmoid CTF of the IBk algorithm.

Fig. 11: Sigmoid CTF of SMO and IBk algrorithms for “Wine” dataset. Green
solid line: True Measurements, dashed red line: estimated sigmoid.

averaged over the splits. In the case of sequential learners, we use 20 splits.
Given the 20 levels of the signal-to-noise ratio and the corresponding algorithm
performance, (i.e., classification accuracy) we estimated the parameters of the
sigmoid. The search in the space of sigmoid parameters is performed by a
genetic algorithm1, as was proposed in [19].

A sample of the true and sigmoid-estimated performance graphs for varying
levels of noise for a non-sequential classifier can be seen in Figure 11. The
corresponding graphs for sequential classifiers are shown in Figure 8. Although
in our experiments the parameters of the sigmoid were estimated offline, the
Sigmoid Rule Framework can be applied in an online scenario, following a
training period.

Figure 12 illustrates the values of the mean and the standard deviation of
the SRF parameters per algorithm, over all 24 datasets for the non-sequential
classifiers. As an example of an interpretation of the figure using SRF, the
plots indicate that (for the range of datasets studied) SMO is expected to
improve its performance faster on average than all other algorithms, when the
signal-to-noise ratio increases. This conclusion is based on the

ralg

dalg
dimension

and the values of the slope indicator c (refer to Figures 12f, 12c). Figure 11
offers a visual comparison of the performances of the SMO and IBk algorithms
for the “Wine” dataset, where we can see that SMO improves its performance
twice as fast as IBk.

At the same time, the confidence interval for
ralg

dalg
and c of the Näıve Bayes

algorithm overlaps with that of the SMO, so these algorithms can also be rec-
ommended if the same criteria are optimized. Nevertheless, SMO and Näıve
Bayes algorithms can be well differentiated by the dalg criterion (see Fig-
ure 12e).

IBk has a smaller potential for improvement of performance (but also
smaller potential for loss) than SMO, when noise levels change, given that
the span of the performance range ralg is higher for SMO (Figure 12d). This
difference can also be seen in Figure 11, where the distance between the min-
imum and the maximum performance values is larger for SMO.

1The settings of the genetic algorithm can be found in the appendix.
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Fig. 12: Estimated SRF parameters per algorithm. X axis labels (left-to-right):
IBk, JRip, NB, NBTree, SMO.

Figure 13 illustrates the values of the mean and the standard deviation
for the SRF parameters per algorithm, over all 18 datasets for the sequential
case. The plots indicate that HMM is expected to improve its performance
faster than the other algorithms, when the signal-to-noise ratio increases (Fig-
ures 13c and 13f). Though the two settings of RNN perform similarly along
these parameters, they are clearly distinct from the rest of the algorithms.
On the other hand, CRF has smaller potential for improvement of its perfor-
mance, but also smaller risk for low performance than HMM, when noise levels
change (Figures 13f and 13d). An example of the fast improvement of HMM
when compared to other families of algorithms can be seen on Figure 8.

As can be seen from Figure 13, all the families of the sequential classifiers
have their specific behavior along the devised SRF dimensions, with certain
variations depending on the order of the model.

We stress that the parameter estimation does not require previous knowl-
edge of the noise levels, but is dataset dependent. In the special case of a classi-
fier selection process, having an estimate of the noise level in the dataset helps
to reach a decision through the use of SRF. In the following, we demonstrate
the existence of this connection between the parameters of the sigmoid curve
and the characteristics of the datasets. Therefore, SRF can help in choosing
the better learner, provided that we know the characteristic of the dataset.
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Fig. 13: SRF parameters per algorithm. X axis labels (left-to-right): CRF 1st
setting and 2nd setting, HMM 1st setting and 2nd setting, RNN 1st setting
and 2nd setting.

7 Modeling Expected Performance in New Datasets

We now study the connection between the dataset characteristics and the
sigmoid parameters, irrespective of the choice of the algorithm. In essence, this
study shows if and how the framework can be used to estimate performance
of algorithms in a noisy setting, in the presence of a new dataset.

We consider the results obtained from all the algorithms as different sam-
ples of the SRF parameters for a particular dataset. We use regression analysis
to observe the cumulative effect of the dataset characteristics on a single pa-
rameter, and we use correlation analysis to detect any connection between each
pair of the dataset characteristic and the sigmoid parameter. We examine the
connections between the dataset characteristics and the sigmoid parameters
both individually, and all together, in order to draw the complete picture.

7.1 Linear regression

We use the “lm” method (Fitting Linear Models) implemented in the package
“stats” in R 2.11.1 to estimate the values of the parameters of the linear
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regression model for each chosen SRF parameter y:

y = α0 + α1x1 + α2x2 + α3x3 + α4x4 + ε,

where xi, i = 1, 2, ... correspond to the features of a dataset, such as the
number of classes, the number of instances, and other dataset characteristics
specific to non-sequential and sequential cases, which are going to be discussed
below; ε is the error term, E(ε) = 0. For choosing the best model, we use a
modification of the bestlm function from nsRFA package in R. This function
also exploits the function leaps of the R package leaps. The criterion for the
best model is the adjusted R2 statistic (the closer the adjusted R2 is to one,
the better the estimation is). R2 defines the proportion of variation in the
dependent variable (y) that can be explained by the predictors (X variables)
in the regression model.

As some variation of y can be predicted by chance, the adjusted value of
R2

a is used. Adjusted R2 takes into account the number of observations (N)
and the number of predictors (k), and is computed using the formula:

R2
a = 1− (1−R2)(N − 1)

N − k − 1
.

After applying the linear model, we exclude the non-significant parameters,
and search for the model that maximizes the adjusted R2 statistic (i.e., the
best linear model).

In addition to R2
a, we applied a statistical test with significance level α =

0.05 for each chosen regression model in order to check if the model fits the
data well. If the model describes the distribution of the values statistically
significantly, then, after the hypothesis testing, the p-value should be within
the significance level.

We applied a leave-one-out validation process, where one dataset is left
out from training and used for testing on every run. We performed this anal-
ysis separately with each of the variables m, M , ralg, dalg,

ralg

dalg
, and c as a

dependent variable y.
Non-sequential case.
For the non-sequential classifiers, the following dataset parameters were

chosen: a number of classes (x1), a number of features (x2), a number of
instances (x3), and the intrinsic dimensionality (x4) of a dataset1(i.e., the
fractal correlation dimension [9,48], calculated using a box counting process).

The results of model fitting and prediction of the SRF dimensions are re-
ported in Table 5, where average errors between the observed and predicted
SRF dimensions are shown. For each SRF dimension chosen, we have ob-
served 5 values (since 5 machine learning algorithms were used), and hav-
ing estimated them for 24 datasets, we ended up with 120 predictions for a
single SRF dimension. We calculated four types of errors: (1) MSE – root

mean square error, MSE =
√

1
n

∑n
i=1(ŷi − yi)2; (2) MAE – mean absolute

1We would like to thank Christos Faloutsos for kindly providing the code for the fractal
dimensionality estimation.
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Table 5: Prediction error of linear regression models for non-sequential classi-
fiers.

Parameters
Error measures

average(R2
a)

MSE MAE RMSE RMAE NRMSE
Min performance m 0.11 0.09 148.92 29.17 0.24 0.54
Max performance M 0.35 0.30 0.51 0.41 0.71 0.88
Performance span ralg 0.32 0.27 0.71 0.46 0.37 0.85
Active area width dalg 1.98 1.41 0.97 0.68 0.15 0.67
Perf. improvement

ralg
dalg

0.37 0.27 4.83 1.46 0.23 0.55

Sigmoid slope c 2.40 1.81 1.41 0.78 0.26 0.65

error, MAE = 1
n

∑n
i=1 |ŷi − yi|; (3) RMSE – relative root mean square er-

ror, RMSE =
√

1
n

∑n
i=1( ŷi−yi

yi
)2; (4) RMAE1 – relative mean absolute error,

RMAE = 1
n

∑n
i=1 |

ŷi−yi

yi
|; and (5) NRMSE – normalized root mean square er-

ror, NRMSE = MSE
ymax−ymin

. In the above formulas, ŷi stands for the predicted
value of the parameter, while yi is the actual value, and n is the number of
predictions.

The last column of Table 5 shows the average of the adjusted R2 statistic
for models that where estimated for all the SRF dimensions (averaged on the
24 datasets).

Figure 14 illustrates how our models fit the test data, showing that in most
cases the true values of the sigmoid parameters for each dataset (illustrated by
circles that correspond to 5 algorithms for each test dataset i, i = 1, 2, ..., 24)
are within the 95% confidence level zone around the estimated values. This
finding further supports the connection between the dataset parameters and
the SRF dimensions.

According to the results, the chosen parameters of the datasets can be
used to reason about the parameters of the sigmoid. This allows us to rec-
ommend algorithms for a new dataset with known characteristics, if we have
estimated the SRF dimensions for a set of algorithms on the datasets with
similar characteristics.

The relation between noise level and average classification performance over
the ’Climate’ dataset is illustrated in Figure 15. There, we depict the curve
of the estimated performance, based on the regression models, as well as the
curves of the actual performances of several algorithms. The plot shows that
the estimation is quite good for the IBk, NBTree and JRip algorithms. The
estimation for the other algorithms is not as good, which may be attributed
to the fact that in our experiments, we trained the regression models using
all available datasets that have very different characteristics. We expect that
training models with a large number of datasets with similar characteristics
can further improve the accuracy.

Sequential case.

1RMAE is also known as mean absolute percentage error.
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Fig. 14: Real and estimated values of the sigmoid parameters for non-sequential
classifiers. Real values: Black rectangles, Estimated values: circles, Gray zone:
95% prediction confidence interval.
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Fig. 15: Sigmoid with regression-estimated parameters with actual sigmoids of
the corresponding classification algorithms for Climate dataset.

In this set of experiments, not all the sequential classification algorithms
use the features of the data instances. Therefore, we examine the influence of
the dataset on the CTF parameters by studying the number of classes (x1),
the number of instances (x2), and the maximal autocorrelation lag of a dataset
(x3), which is described in more detail in Section 6.2.



30 Katsiaryna Mirylenka et al.

We also applied a leave-one-out method for six dependent variables, as in
the non-sequential dataset case. The results of model fitting and predictions
of SRF dimensions are reported in Table 6.

For each SRF dimension chosen, we have observed 6 values, since 3 sequen-
tial learning algorithms were used, and each algorithm is applied in 2 different
settings of dependency order. These 6 SRF dimensions are estimated for 18
datasets, thus 108 predictions were done for each SRF dimension. We also
calculated four types of errors, as with the non-sequential datasets (Table 6).

Table 6: Prediction error of linear regression models for sequential data.

Parameters
Error measures

average(R2
a)

MSE MAE RMSE RMAE NRMSE
Min performance m 0.13 0.10 46.80 8.67 0.31 0.25
Max performance M 0.41 0.33 0.45 0.37 0.71 0.81
Performance span ralg 0.37 0.30 0.48 0.39 0.33 0.81
Active area width dalg 2.01 1.57 0.98 0.69 0.44 0.58
Perf. improvement

ralg
dalg

0.36 0.29 1.24 0.88 0.18 0.67

Sigmoid slope c 2.38 1.88 0.85 0.68 0.20 0.67

Just like the non-sequential data, for sequential data classification, we can
see the relationship between the dataset parameters and the SRF dimensions.
Figure 16 illustrates how our models fit the test data.

The results show that most of the true parameter values are within the
95% prediction confidence levels. Thus, we can use the dataset parameters in
order to reason about the parameters of the sigmoid of the algorithms. This
enables us to recommend the algorithm of choice in advance for a new dataset
with known characteristics. We can additionally recommend the order of the
sequential classifier, if we have computed the SRF dimensions for a set of
algorithms for datasets with similar characteristics.

7.2 Logistic regression

We also employed logistic regression, by applying the same leave-one-out pro-
cess, for the purpose of predicting the SRF dimensions. While applying logis-
tics regression, we use the Akaike Information Criterion (AIC) instead of the
adjusted R2

adj in order to choose the best model.
Being a measure of the relative quality of a statistical model for given data,

AIC provides the means for model selection. In the general case, the AIC is
calculated as follows

AIC = 2k − 2 ln(L),

where k is a number of parameters in the statistical model, and L is the
maximized value of the likelihood function for the estimated model [2]. We
choose the best prediction model by minimizing the average AIC.



On classifier behavior in the presence of mislabeling noise 31

Fig. 16: Real and estimated values of the sigmoid parameters for sequential
classifiers. Real values: black rectangles, Estimated values: circles, Gray zone:
95% prediction confidence interval.

We also calculate four types of errors, as in linear regression. The results
of model fitting and prediction of SRF dimension for non-sequential data sets
are shown in Table 7, while the results for sequential data sets are shown in
Table 8.

Table 7: Prediction error of logistic regression models for non-sequential data.

Parameters
Error measures

AIC
MSE MAE RMSE RMAE NRMSE

Min performance m 0.14 0.10 300.26 51.73 0.29 37.26
Max performance M 0.19 0.16 0.27 0.22 0.38 54.30
Performance span ralg 0.20 0.17 0.51 0.30 0.24 120.91
Active area width dalg 2.07 1.27 0.70 0.51 0.16 -220.05
Perf. improvement

ralg
dalg

0.38 0.29 3.90 1.47 0.23 -289.60

Sigmoid slope c 2.15 1.42 0.76 0.47 0.23 -246.88

According to the experimental evaluation, the logistic regression model
gives better prediction for some SRF dimensions, producing relatively smaller
errors compared to the linear regression results. For both the non-sequential
(Tables 5 and 7) and sequential (Tables 6 and 8) cases, the parameters M
and ralg are better predicted with the logistic regression model. Additionally,
for the non-sequential case, c is better predicted using the logistic regression
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Table 8: Prediction error of logistic regression models for sequential data.

Parameters
Error measures

AIC
MSE MAE RMSE RMAE NRMSE

Min performance m 0.14 0.11 15.70 5.29 0.35 38.11
Max performance M 0.13 0.09 0.15 0.10 0.32 36.19
Performance span ralg 0.17 0.14 0.35 0.20 0.20 68.19
Active area width dalg 2.56 2.04 0.70 0.65 0.48 131.51
Perf. improvement

ralg
dalg

0.38 0.33 1.96 1.38 0.25 -255.32

Sigmoid slope c 3.38 2.46 0.64 0.60 0.38 -223.99

model. The accurate prediction of the SRF dimensions supports the connection
between the dataset characteristics and the performance parameters. Thus,
given the characteristics of a dataset, we can reason about the parameters of
the sigmoid of the algorithms, which enables us to recommend the algorithms
of choice in advance for the dataset at hand.

7.3 Correlation analysis

We used three different correlation coefficients – the Pearson’s correlation co-
efficient for linear correlation, the Spearman’s rho, and the Kendall’s tau co-
efficients for monotonic correlation – to analyze the connection between the
parameters of the datasets and the SRF dimensions. Each coefficient varies
from −1 (total negative correlation) to 1 (total positive correlation). A value
of 0 implies that there is no correlation between the variables.

We qualitatively interpret the strength of the absolute values of corre-
lation as follows: [0.0; 0.1) →No Correlation, [0.1; 0.3) →Low Correlation,
[0.3; 0.5) →Medium Correlation, [0.5; 1] →Strong Correlation. This interpre-
tation is widely accepted [12], [16], [55], though the borders may vary slightly
depending on the domain (for example, in medicine, higher thresholds for
strong correlation are usually required [50]).

Non-sequantial case.

In the non-sequential case, the parameters of a dataset are as before: x1
– the number of classes, x2 – the number of features, x3 – the number of
instances, and x4 – the intrinsic dimensionality. For the analysis we use the
same data as for the non-sequential regression analysis in Section 7.1. There-
fore, for each SRF dimension we have 5 values corresponding to each classifier,
and, after training the classifiers on 24 datasets, we obtained 120 values for a
single SRF dimension. Then, we correlate the SRF dimension values with the
corresponding parameters of a dataset. All the correlation coefficients showed
similar correlation trends, thus in Table 9 we show only the Spearman’s rho
correlation coefficient. Other correlation coefficients, along with full list of p-
values can be found in Table 11, in Appendix A.2.

In Table 9 Green (dark) cells mark the pairs that have medium statistically
significant correlation. If the p− value of the coefficient is lower than 0.05 we
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emphasize the correlation value with underlined bold, if p − value < 0.1 -
with italics-bold.

Table 9: The values of the Spearman’s rank correlation coefficients between
parameters of the dataset and the parameters of the sigmoid. Non-sequential
case.

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1 0.02 -0.26 -0.25 0.31 -0.34 -0.34
# of attr x2 0.03 -0.26 -0.24 0.14 -0.20 -0.15
# of inst x3 -0.05 0.03 0.02 -0.21 0.18 0.18
fract dim x4 -0.03 -0.20 -0.18 0.06 -0.11 -0.07

Summarizing the results from all the correlation coefficients (refer to Ta-
ble 9 and 11), some interesting conclusions can be drawn. First, the number
of classes (x1) is inversely correlated to

ralg

dalg
, c, ralg and M . Thus, the higher

the number of classes is, the lower the sensitivity to noise variation (check on
ralg

dalg
); the lower the number of classes, the higher the impact of reducing noise

on performance (check ralg and M). These conclusions are also supported by
the direct correlation between the number of classes and the width of the ac-
tive area of the algorithm dalg. Thus, the number of classes (x1) significantly
influences the behavior of an algorithm, regardless of the family of the algo-
rithm. We also note the complete lack of significant correlation between the
minimum performance m and all of the SRF dimensions: given enough noise
an algorithm always performs badly.

Second, the number of features (x2) provides a minor reduction of sensi-
tivity to noise variation (resulting from low correlation to dalg and c). This
conclusion is also supported by the negative influence on

ralg

dalg
, ralg. We also

note that the number of features affects the maximal performance M , which
shows (rather contrary to the intuition) that more features may negatively
affect performance in a noise-free scenario. This is most probably related to
features that are not essentially related to the labeling process, thus inducing
feature noise. On the other hand, if the number of instances is too low, then
it is hard for the classifier to generalize over many features.

Third, there is a correlation between the number of instances (x3),
ralg

dalg
,

and the slope indicator c. This shows that larger datasets (providing more in-
stances) increase the sensitivity to noise variation. Furthermore, in such highly
populated datasets, reducing the label noise is expected to have a significant
impact on performance.

Last, the fractal dimensionality (x4) of a dataset has low, but statistically
significant, negative influence on M and on ralg. Fractal dimensionality is
indicative of the “complexity” of the dataset. Thus, if a dataset is complex
(high x4), machine learning is difficult even at low noise levels. We note that
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low ralg may be preferable in cases where the algorithm should be stable even
for low signal-to-noise ratios.

Sequential case.

For the sequential case, we study the connection between SRF dimensions
and the following dataset characteristics: the number of classes (x1), the num-
ber of instances (x2), and the maximal autocorrelation lag of a dataset (x3).
For the analysis we use the same data as for the sequential regression analysis
in Section 7.1. Therefore, for each SRF dimension we have 6 values corre-
sponding to each classifier, and, after training the classifiers on 18 datasets,
we obtained 108 values for a single SRF dimension. Then, we correlate the
SRF dimension values with the corresponding parameters of a dataset.

The results are shown in Table 10, where Yellow (light) cells mark the pairs

that have strong statistically significant correlation, green (dark) cells mark the
pairs that have medium statistically significant correlation. If p−value < 0.05
the cell is emphasized with underlined bold, if p−value < 0.1 – with italics-
bold. Similarly to the non-sequential case, we report only the Spearman’s rho
correlation coefficient here, while all the other coefficients with the correspond-
ing p− values can be found in Appendix A.2 in Table 12.

Table 10: The Spearman’s rank correlation coefficients between parameters of
the dataset and parameters of the sigmoid. Sequential case.

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1 -0.174 -0.004 0.082 0.393 -0.290 -0.393
# of inst x2 -0.099 -0.264 0.165 -0.483 0.409 0.483

autocorr lag x3 -0.335 0.511 0.434 -0.127 0.221 0.127

The results demonstrate that the number of classes x1 is inversely cor-
related with the slope indicator c, and positively correlated with the active
performance range dalg, as in the non-sequential case. This leads to the fol-
lowing conclusion: the higher the number of classes is, the lower the sensitivity
to noise variation is, regardless of the learning algorithm.

The number of instances x2 is positively correlated with the slope indica-
tors ralg/dalg and c, and is negatively correlated with the active area of the
algorithm. Thus, the number of instances has the opposite effect of the number
of classes, and in datasets with a large number of instances, reducing the label
noise is expected to have a significant impact on performance. The same effect
is observed for non-sequential datasets.

The autocorrelation lag x3 has an influence on the performance range: if
the dependency history is deep (high x3), then the maximal performance grows
(M), and the minimal performance drops (m). Thus, the expected accuracy of
sequential classification task is higher if the dataset has deeper history, which
is an intuitive result. Finally, compared to the correlation analysis of non-
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sequential data, sequential data overall shows stronger correlations indicating
robust use potential across classifier types.

7.4 Regression and Correlation Analysis: Summary

For both cases of non-sequential and sequential classification there is a strong
cumulative and individual effect of dataset characteristics on the SRF dimen-
sions. This allows us in most of the cases to reason about the expected per-
formance of the algorithms given certain dataset characteristics. If the SRF
dimensions are estimated for a set of algorithms for datasets with certain
characteristic, this allows for recommending an algorithm for a new dataset
with similar characteristics. In the case where a specific SRF dimension is of
great importance, the dataset characteristics provide an insight on how the
dimension will behave, and if it is possible to increase or decrease its value.
For example, in the case of a large number of instances in the dataset, the
sensitivity to noise variation is increasing, thus, the performance improvement
ratio ralg/dalg will also be larger. Therefore, reducing the label noise will have
significant impact on performance. This effect is even stronger for sequential
classifiers.

8 Discussion

Machine learning algorithms are often used in noisy environments. Therefore,
it is important to know a priori the properties of an algorithm depending on
the characteristics of the dataset and the noise in a setting. In this work, we
investigated whether some simple dataset properties (namely, the number of
classes, the number of features, the number of instances, the fractal dimen-
sionality for the non-sequential case, and the maximal autocorrelation lag for
the sequential case) can help in the above direction.

We proposed the Sigmoid Rule Framework, describing a set of dimensions
that may be used by a decision maker to choose a good classifier for a specific
case. Our approach is applicable to user modeling tasks, when the user changes
behavior over time, and to any concept drift for data series mining or label
noise problems. For example, in the case of two robots that communicate
trying to determine the best line of action given a set of sensor readings,
the proposed method could be applicable. Let us consider the case where the
communication is faulty, allowing labeling noise. In that case, one may want
to use the most robust algorithm, i.e. the algorithm that is most unlikely
to lead to very poor performance if the noise is high. In this example, and
taking into account Figure 8 of the ’Robot Walk 4’ data, the designer may
select the classifier based on the Conditional Random Fields with second-
order dependencies (corresponding to curve (d)), because it has the highest
minimum expected performance and is quite robust in the change of noise
levels. If the preference in the performance is changed and one would like to
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have the algorithm with the fastest performance improvement, the HMM with
second order dependencies can be chosen (Figure 8b).

Given such problems, we proposed – in Section 5 – a workflow and method
to select a classifier based on user preferences. We also showed that the pa-
rameters related to the behavior of learners correlate with the dataset char-
acteristics, and the range of their variation may be predicted using linear or
logistic regression models.

Therefore, SRF can be a useful meta-learning framework, specialized in
settings that include labeling noise. Similar to several meta-learning methods,
SRF uses characteristics that are efficient to compute (number of classes, num-
ber of attributes, fractal dimension). However, we expect the overall complex-
ity of applying SRF to be higher than corresponding meta-learning approaches,
since SRF requires an initialization phase, where it estimates performance over
varying degrees of noise. We should note though, that in concept drift settings
a similar burden is put in detecting drift (e.g., [29]) during classification. Using
SRF, this burden may be applied once, at the beginning of the training, for
the selection of an overall best algorithm over all possible noise settings.

As we discussed in the previous section, the SRF model shows promis-
ing results regarding the expected performance of algorithms given a specific
dataset, regardless of the underlying algorithm. Nevertheless, these results do
not provide enough precision to predict the performance of a specific algorithm.
This is an interesting research question, which we are currently pursuing.

Overall, we claim that our approach presents a paradigm shift to how al-
gorithms can be evaluated, and the results presented in this study provide a
proof-of-concept for this new paradigm. The focus of our experimental evalua-
tion was to illustrate the value of the proposed method in the specific context
of noisy settings. It would be very interesting to further extend the proposed
approach, and compare it to well-established alternatives, by studying its ap-
plicability to a variety of settings other than the originally intended labeling
noise, such as, dataset imbalance, adaptation to new domains, and complexity
and effectiveness in non-noisy settings.

As future work, we would like to examine more of the dataset features
used in the literature, in order to evaluate how they affect the sigmoid of an
algorithm for a given problem, both theoretically and experimentally. From the
application point of view we will evaluate whether meta-learning frameworks
after using the SRF dimensions to enrich their view of the algorithms, improve
their performance and increase the number of cases where they are efficient. We
expect that the features generated in our framework, namely SRF dimensions,
can provide added value to existing meta-learning frameworks by enriching
the representation of algorithms and by embedding information of expected
performance in different noisy settings. Our study may provide insight on
the expected impact of noise removal (e.g. instance filtering) on the average
performance of a given learning algorithm.
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9 Conclusions

In this work we studied two, dual problems: comparing algorithm behavior,
and choosing learning algorithms for noisy settings.

We presented the “Sigmoid Rule” Framework (SRF), which uses a model of
the expected performance of learning algorithms, that is a sigmoid function of
the signal-to-noise ratio in the training instances. We studied the parameters
of the sigmoid function using five representative non-sequential classifiers, and
three widely used sequential classifiers. Based on the sigmoid parameters we
defined a set of intuitive criteria that are useful for comparing the behavior
of learning algorithms in the presence of noise. The framework is applicable
to concept drift scenarios, including modeling user behavior over time, and
mining of noisy time series of evolving nature.

The experimental evaluation showed that there is a connection between the
SRF parameters and the characteristics of the underlying dataset, indicating
that we can estimate the expected performance over a dataset regardless of
the underlying algorithm.

As a summary, the main contributions of our work are the following:

1. A unified view of the performance of learning algorithms in a training label
noise setting.

2. A framework for estimating an analytic function that connects the expected
performance to varying noise levels.

3. The extension of the above framework for sequential classifiers.
4. The study of the framework parameters as decision factors for algorithm

selection in specific settings.
5. The illustration of a robust connection between specific dataset character-

istics and the expected classifier performance.

As future work, we are going to verify the SRF framework for large groups
of datasets and classifiers, validate the prediction of SRF dimensions given the
characteristics of the datasets, build a recommender of the optimal classifier for
a given set of user requirements about the classifier behavior in noisy settings
and validate it on real tasks.
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A Appendices

A.1 The Genetic Algorithm Settings

We used the JGAP1 genetic algorithms package for the search in the sigmoid parameter
space and Java Statistical Classes library for the statistical measurement the Kolmogorov-
Smirnov (KS) test2. Default operators for double numbers were used. The alleles were five
parameters, one per parameter:

- m with allowed values in [0.0, 0.5].
- M with allowed values in [0.5, 1.0].
- b with allowed values in [0.0, 50.0].
- c with allowed values in [0.0, 50.0].
- d with allowed values in [−5.0, 5.0].

Essentially, employing the genetic algorithm, we try to maximize the following quantity:

fitness(i) = 100 ∗
(

1 +
1

D + 1

)
,

where i is a candidate individual in the genetic algorithm, corresponding to a given set of
parameter values and fitness(i) the value of the fitness function for that individual. The
parameter D is the D statistic of the KS test [35], which is higher when the fit is worse. The
population per iteration is 10000 individuals. Our search ends when there is no significant
(that is > 10−5) improvement after 20 consecutive iterations of the genetic algorithms, or
when 1000 iterations have been completed.

1See http://jgap.sourceforge.net/.
2See http://www.jsc.nildram.co.uk/.
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A.2 Correlation Results

Non-sequential case. All the correlation coefficients with the corresponding p − values

are shown in Table 11. Green (dark) cells mark the pairs that have medium correlation.

P − values of importance are emphasized as follows: (p − value < 0.05 underlined bold
cells, p− value < 0.1 italics-bold cells).

Table 11: The values of three correlation coefficients between parameters of
the dataset and the parameters of the sigmoid. Non-sequential case.

Pearson’s correlation coefficient

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1
coef -0.03 -0.26 -0.21 0.13 -0.29 -0.28
pvalue 0.736 0.005 0.025 0.179 0.001 0.002

# of attr x2
coef -0.07 -0.31 - 0.23 0.13 -0.21 -0.18
pvalue 0.463 0.001 0.012 0.173 0.025 0.049

# of inst x3
coef 0.14 0.08 -0.01 -0.12 0.12 0.16
pvalue 0.130 0.402 0.950 0.209 0.193 0.093

fract dim x4
coef 0.04 -0.16 -0.16 0.13 -0.09 -0.06
pvalue 0.690 0.086 0.092 0.168 0.364 0.549

Spearman’s rank correlation coefficient

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1
coef 0.02 -0.26 -0.25 0.31 -0.34 -0.34
pvalue 0.810 0.005 0.008 0.001 0.000 0.000

# of attr x2
coef 0.03 -0.26 -0.24 0.14 -0.20 -0.15
pvalue 0.718 0.006 0.011 0.124 0.030 0.110

# of inst x3
coef -0.05 0.03 0.02 -0.21 0.18 0.18
pvalue 0.579 0.752 0.863 0.024 0.053 0.054

fract dim x4
coef -0.03 -0.20 -0.18 0.06 -0.11 -0.07
pvalue 0.712 0.036 0.058 0.559 0.241 0.426

Kendall’s τ rank correlation coefficient

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1
coef 0.01 -0.17 -0.18 0.22 -0.24 -0.24
pvalue 0.909 0.009 0.007 0.001 0.000 0.000

# of attr x2
coef 0.02 -0.18 -0.16 0.10 -0.14 -0.11
pvalue 0.715 0.007 0.013 0.111 0.032 0.094

# of inst x3
coef -0.05 0.01 0.01 -0.14 0.12 0.12
pvalue 0.400 0.818 0.896 0.032 0.063 0.071

fract dim x4
coef -0.03 - 0.12 -0.11 0.04 -0.07 -0.06
pvalue 0.681 0.062 0.081 0.507 0.267 0.378

Sequential case. All the correlation coefficients with the corresponding p− values are

shown in Table 12, where Yellow (light) cells mark the pairs that have strong statistically

significant correlation, green (dark) cells mark the pairs that have medium statistically

significant correlation. If p− value < 0.05 the cell is emphasized with underlined bold, if
p− value < 0.1 – with italics-bold.
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Table 12: Three correlation coefficients between parameters of the dataset and
parameters of the sigmoid. Sequential case.

Pearson’s correlation coefficient

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1
coef -0.117 0.063 0.113 0.238 -0.220 -0.265
pvalue 0.228 0.520 0.246 0.013 0.022 0.006

# of inst x2
coef 0.019 0.191 0.088 -0.446 0.523 -0.526
pvalue 0.842 0.048 0.362 0.000 0.000 0.000

autocorr lag x3
coef -0.199 0.421 0.359 -0.117 0.226 0.125
pvalue 0.039 0.000 0.000 0.227 0.018 0.196
Spearman’s rank correlation coefficient

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1
coef -0.174 -0.004 0.082 0.393 -0.290 -0.393
pvalue 0.072 0.964 0.396 0.000 0.002 0.000

# of inst x2
coef -0.099 -0.264 0.165 -0.483 0.409 0.483
pvalue 0.309 0.006 0.088 0.000 0.000 0.000

autocorr lag x3
coef -0.335 0.511 0.434 -0.127 0.221 0.127
pvalue 0.000 0.000 0.000 0.190 0.021 0.190
Kendall’s τ rank correlation coefficient

Parameter m M ralg dalg
ralg

dalg
c

# of classes x1
coef -0.124 0.001 0.067 0.302 -0.219 -0.302
pvalue 0.080 0.991 0.347 0.000 0.002 0.000

# of inst x2
coef -0.068 0.176 -0.16 -0.328 0.280 0.328
pvalue 0.306 0.008 0.081 0.000 0.000 0.000

autocorr lag x3
coef -0.234 -0.354 0.295 -0.089 0.160 0.089
pvalue 0.000 0.000 0.000 0.191 0.019 0.191
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