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Abstract In this paper we focus on the analysis of peer reviews and reviewers be-

haviour in a number of different review processes. More specifically, we report on the

development, definition and rationale of a theoretical model for peer review processes

to support the identification of appropriate metrics to assess the processes main charac-

teristics in order to render peer review more transparent and understandable. Together

with known metrics and techniques we introduce new ones to assess the overall qual-

ity (i.e. ,reliability, fairness, validity) and efficiency of peer review processes e.g. the

robustness of the process, the degree of agreement/disagreement among reviewers, or

positive/negative bias in the reviewers’ decision making process. We also check the

ability of peer review to assess the impact of papers in subsequent years. We apply the

proposed model and analysis framework to a large reviews data set from ten different

conferences in Computer Science for a total of ca. 9,000 reviews on ca. 2,800 submitted

contributions. We discuss the implications of the results and their potential use toward

improving the analysed peer review processes. A number of interesting results were

found, in particular: (1) a low correlation between peer review outcome and impact in

time of the accepted contributions; (2) the influence of the assessment scale on the way

how reviewers gave marks; (3) the effect and impact of rating bias, i.e. reviewers who

constantly gives lower/higher marks w.r.t. all other reviewers; (4) the effectiveness of

statistical approaches to optimize some process parameters (e.g. ,number of papers per

reviewer) to improve the process overall quality while maintaining the overall effort

under control. Based on the lessons learned, we suggest ways to improve the overall

quality of peer-review through procedures that can be easily implemented in current

editorial management systems.
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1 Introduction

Over the last few centuries, peer review has been considered a fundamental part of

the scientific research and dissemination process (Zuckerman and Merton, 1971). The

review process is used to ascertain quality of scientific contributions and project pro-

posals and to provide credits assignment as well as career advancement to researchers.

Indeed, nearly every scientific journal bases its selection on peer review, and scientists

spend a significant amount of their work time in reviewing papers (in Computer Sci-

ence, for example, it is common for senior researchers to review more than a hundred

papers per year).

Surprisingly, especially given that peer review is used by scientists and it is such a

fundamental part of researchers’ daily life and career, there have been very few studies

aiming at obtaining scientific evidence that peer review is a good way (or even the

optimal way) to assess the truthfulness, quality, and potential impact of a scientific

contribution or project proposal. In most cases we just proceed on the intuition or

belief that it works. Even fewer are the scientific studies aiming at identifying how the

review process can be made more efficient in terms of the trade-off between the review

effort by the community and the validity of the review result.

In this paper we (i) search for scientific evidence that peer review “works” (or that

it doesn’t), and (ii) search for ways to improve the peer review process so that it can

“work better”. We do this by defining a set of metrics that are indicative of the quality

of peer review processes: that is, aim at measuring how peer review “works”. The

purpose of such metrics is to help us understand and improve the peer review process

along the following main dimensions: reliability, fairness, validity and efficiency. A

reliable peer review process is, in our view, a process that provides a good prediction

of the entire committee consensus opinion: i.e.,how far the practical choice of involving

a reduced set of reviewers (typically three) in the review of each contribution is from

the ideal case where everybody in the review committee evaluate the contribution.

Fairness, in our approach, is related to the monitoring of the contribution distribution

process to the reviewers: a process is the more fair the less it depends on the particular

set of reviewers within the program committee to which it is assigned. Validity is

related to the final result: a review process is valid if the best contributions are chosen.

Efficiency is related to the time spent in preparing and assessing the contributions

and to the statistical accuracy of the review results: a process is efficient if the best

proposals are accurately chosen with minimal time spent both by authors in preparing

the contribution and by reviewers in performing the reviews.

In order to achieve our research objectives we designed and performed a large-scale

analysis of review data, and we tried to present and explain the results in a way that

allows readers to easily form an intuition for what they mean in practice.

We are certainly not the first to perform an analysis of review data. In the related

work section we review papers that are more closely related to our research and also

refer to surveys on this topic. With respect to the literature, however, our analysis on

peer review differs from others for the following main contributions:

• we formally define - and measure - metrics for the validity of peer review, which

we believe mirror what people expect today from peer review:

(i) that peer review identifies papers/proposals that are scientifically correct and

that are likely to have a scientific impact in the future, and/or

(ii) that peer review identifies papers/proposals that the scientific community is
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likely to be interested in reading and considers worth research directions.

We explicitly do not consider in our current work another important aspect of peer

review, namely that of providing feedbacks to authors. Here, we are only concerned

with the selection process and with quantitative data.

• we analyze a large dataset including nearly three thousands contributions and ca.

nine thousands reviews in the domain of Computer Science.

• we investigate the efficiency of the review process, to identify how to improve the

effectiveness of the process while maintaining the same overall reviewing effort.

• we introduce intuitive ways of expressing the results of our analysis, providing

measures that are understandable and “actionable”.

The majority of the data we have been able to collect come from the engineering

field, mostly from Computer Science (CS). As such, we cannot claim that the results

have general validity - and the same applies for every study in a single domain. In

particular CS is rather different from the domains in which research on peer review

has been more active (such as Physics and Medicine), as it is characterised by an

high number of papers per researcher, most of which are not oriented at trying to

model or understand how the world or the human body behaves, but rather try to

propose new models, algorithms, or software. In CS it is rare the case where the review

points out that a paper is “wrong”. The typical criticism is that a paper is not that

novel, that the problem attacked is not useful or applicable in practice or that it lacks

sufficient theoretical or empirical validation. Moreover, conference publications enjoy

greater status in computer science than in other disciplines (Chen and Konstan, 2010;

Freyne et al, 2010). This being said, the results we obtained are, we believe, relevant

and point to the need for further scrutiny on peer review as well as alternative models

of review. Here is a short summary of our main findings:

• in all our available data, there is only a low correlation between the rankings of the

review process and the impact of the papers as measured by citations; this is also

true in the similar study of a posteriori review of the same contributions at a later

time;

• the influence of the assessment scale on the way how reviewers gave marks;

• the disagreement among reviewers is a useful metric to check and monitor during

the review process. Having a high disagreement means, in some way, that the

judgment of the involved peers is not sufficient to state the value of the contribution

itself. This metric can be useful to improve the quality of the review process as it

can support the decision whether more reviewers are needed in order to improve

the process reliability.

• it has always been possible to identify groups of reviewers that consistently give

higher (or lower) marks than the others independently from the quality of the

specific contribution they have to assess. The information coming from such analysis

and eventual un-biasing procedures (like the one we proposed in this article) could

be useful to review processes chairs to improve the fairness of the review process;

• we have shown that it is possible to devise statistical approaches to tune review

process parameters to improve quality while keeping the overall effort under control.

The paper is structured as follows. In Section 2 we provide a brief description

of related work. Section 3 introduces our generic framework to the analysis of peer

review processes, in particular our proposed metrics and model for peer review used

in the subsequent analysis, while Section 4 illustrates the data set we used for our
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analysis. In Section 5 we introduce a preliminary analysis on the quality of peer review

process, while in the subsequent Sections 6, 7, 8 we present in detail for each analyzed

dimension - reliability, fairness and validity - the proposed metrics, related results and

lessons learned. In Section 9 we investigate a new dimension: efficiency, in order to

suggest possible improvements in the review process. Conclusion and discussion on the

findings close the paper.

2 Related Work

Peer review is probably one of the most debatable topic among scientists and has been

widely studied in the last years, although no one of these studies can be considered

comprehensive or conclusive. In fact, while peer review has been analyzed and studied

by several researchers, we notice that such analysis are not straight comparable, as

they refer to review processes coming from different disciplines and different journals.

Indeed, sometime even analysis done in the same field can lead to contradictory results

(Jefferson et al, 2002a). Even if peer review has been used as method of evaluation

since Greek time (Barnes J., 1981; Spier R., 2002; Zuckerman and Merton, 1971), the

first journals that were selective in the choice of their manuscripts were the Journal

des Savants and the Philosophical Transaction of the Royal Society of London, both

founded in 1665 (Spier R., 2002; Zuckerman and Merton, 1971). The first journal that

introduced officially the peer review process as we know it today has been the Medical

Essays and Observations, first published in 1731 (Spier R., 2002; Benos et al, 2007).

Recently, many scientists started to study the effectiveness and, more in general, the

qualities and properties of peer review. A significant number of papers report that peer

review is a process whose effectiveness “is a matter of faith rather than evidence” (Smith

R., 2006), that is “untested” and “uncertain” (Jefferson et al, 2002a), and on which

we know very little because scientists are rarely given access to relevant data. Lock,

S. (1994) claims that peer review can at most help detect major errors and that the

criteria for judging a paper is to look at how often its content is used and referred to

several years after publication. Other experimental studies put in doubt the ability of

peer review to even spot important errors in a paper (Godlee et al, 1998). In general,

however, although crude and understudied, peer review is still considered a process to

which no reasonable alternatives have been found (Kassirer and Campion, 1994; Smith

R., 2006).

The various studies on peer review differ in which metric they evaluate and in the

kind and amount of data that is available. Indeed, having precise objectives for the

analysis is one of the key and hardest challenges as it is often unclear and debatable to

define what it means for peer review to be effective (Jefferson et al, 2002b). In general

we can divide the metrics in two groups: those aiming at determining the effectiveness

or validity or peer review, and those aiming at measuring what authors consider to

be “good” properties of peer review but that per se do not imply that peer review

“works”.

Among the first category, studies aim at assessing the ability of peer review to detect

errors and the ability to predict the future impact, measured in terms of citation count.

For what concerns the ability to detect errors, a study was conducted by (Goodman

et al, 1994) who tried to measure the quality of the papers submitted to the Annals

of Internal Medicine between March 1992 and March 1993 before and after the peer

review process. They did not find any substantial difference in the manuscripts before
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and after publication. Indeed, they state that peer review was able to detect only

small flaws in the papers, such as figures, statistics and description of the results. An

interesting study was carried out by (Godlee et al, 1998): they introduced deliberate

errors in papers already accepted by the British Medical Journal(BMJ) 1. Godlee et

al. report that the mean number of major errors detected was 2 out of a total of 8,

while there were 16% of reviewers who did not find any mistake, and 33% of reviewers

went for acceptance despite the introduced mistakes.

Citation count was used as a metric in peer review processes analysis mostly in

studies by Bornmann and Daniel. A first study reports on whether peer review com-

mittees are effective in selecting people that have higher citation statistics, and finds

that there is indeed such a correlation (Bornmann and Daniel, 2005b). Another inter-

esting study concerns preliminary review of papers by staff editors of journals, before

sending the papers through a peer review process. Besides emphasizing that the opin-

ions of staff editors is often uncertain and different from that of the reviewers, the

study observes that “three-quarters of the manuscripts that were rated negatively at

the initial internal evaluation but accepted for publication after the peer review had -

when published - far above-average citation counts” (Bornmann and Daniel, 2010b).

Our work in terms of effectiveness or validity focuses on three metrics (citations,

a posteriori review, and ability to predict consensus opinion of the reviewers’ commu-

nity, e.g.,through (dis)agreement analysis). None of the prior art uses these metrics to

analyze the result of peer review on scientific papers in the same way. Many works -

such as the interesting work by (Bornmann and Daniel, 2005b) - do consider one of

them (citations) as a validity metric, but do not consider the rankings that come out

of the peer review process and compare them with citations, which is one of the main

aspect we consider in this paper.

Research aiming at measuring properties of peer review has been mostly focused

on identifying biases and understanding their impact in the review process. Indeed,

reviewers’ objectivity is often considered a fundamental quality of a review process:

‘The ideal reviewer,’ notes Ingelfinger (Ingelfinger, 1974), ‘should be totally objective,

in other words, supernatural’. Among the large number of contributions that had con-

cern in bias detection, there are works that have found affiliation bias (meaning that

researchers from prominent institutions are favored in peer review) (Ceci and Peters,

1982), bias in favor of US-based researchers (Link A.M., 1998), or gender bias against

female researchers(Wenneras and Wold, 1997; Bornmann, 2007; Ceci and Williams,

2011). Another source of bias in peer review is conflict of interest bias, particularly in

health related domains (F et al, 2001). Yet application of the multiple logistic regres-

sion models in (Reinhart M., 2009) for the Swiss National Science Foundation (SNSF)

- funding organization for basic research in Switzerland for the natural and social sci-

ences - reveals that all potential sources of bias (gender, age, nationality, and academic

status of the applicant, requested amount of funding, and institutional surrounding)

are non-significant predictors.

Multiple logistic regression models of detecting the potential sources of bias in the

peer review process were also used in (Bornmann and Daniel, 2005b) for defining the

most frequently examined potential sources of bias, that could appear in selection of

research fellowship recipients, such as: the applicant’s gender, nationality, major field

1 “With the authors consent, a paper already peer reviewed and accepted for publication
by BMJ was altered to introduce 8 weaknesses in design, analysis, or interpretation”(Godlee
et al, 1998)
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of study and institutional affiliation. Generalized linear mixed model of the log-odds

ratio was used again to detect gender bias in SNSF (Bornmann et al, 2008a): here the

authors pointed out that - using the generalized linear mixed model to detect unequal

odds ratios - indications of potential sources of bias (such as gender, nationality, social

status) can be examined not only for grant peer review but also for journal peer review.

The Kruskal-Wallis test, a nonparametric version of one way Analysis Of Variance

(ANOVA, (Kruskal and Wallis, 1952)) was used to detect the bias of the application

order, namely the bias that is due to the fact that application was considered as first

(Bornmann and Daniel, 2005a) and the authors detected that there is an evidence

that being first increases the probability of being accepted. In the area of measuring

properties of peer review, our work differs from the prior art for the large scale of

the analysis and for the identification of metrics and approaches that can be more

intuitively understood by the reader. In addition we compute the rating bias (reviewers

consistently giving higher or lower marks), which is a kind of bias that appears rather

often, that is easy to detect, and that can be corrected with rather simple procedures

(see Section 7). We also examine its effect on other properties of peer review processes.

A common way to identify bias is also to compare single and double-blind re-

view. Single-blind review provides anonymity to the reviewers and is used to protect

the reviewers form the authors’ requital. Nowadays, single-blind review became the

commonly used practice. Double-blind review, where identities of both authors and

reviewers are hidden are also used sometimes. The purpose of it is to help the review-

ers to assess only scientific achievements of the paper, not taking into consideration

other factors and therefore not to be somehow biased. For instance, ACM SIGMOD

(a conference on management of data) organizes conferences where double-blind re-

view is adopted. Analysis of the merit of the double-blind review process are so far

contradictory. In (Madden and DeWitt, 2006), a set of statistics had been provided

with the conclusion that double-blind reviewing make no impact on ACM SIGMOD

publications. But later opposite results where published by Anthony K. H. Tung (Tung

A.K.H. , 2006), where he made two studies which indicate that double-blind review

in ACM SIGMOD do have impact on the performance of famous person compared

to VLDB (another popular conference series on database technology, but where all

conferences are not double-blind). Moreover, it is in general difficult to enforce the

double-blind review policy, as authors always introduce (deliberately or by mistake)

elements that help reviewers to identify them (Katz et al, 2002).

Research on open peer review (where the reviewer’s name is known to the authors)

is at present very limited. Initial studies showed that open reviews were of higher

quality, were more courteous and reviewers spent typically more time to complete

them (Walsh et al, 2000; Bornmann et al, 2012; van Rooyen S., Godlee F., Evans S.,

Black N., Smith R., 1999). We did not come across any study that compares open

versus blind reviews in terms of bias estimation.

Now, scientists and editors are taking alternative approaches to tackle some of the

pervasive problems with traditional peer review (Akst J., 2010). This include enabling

authors to carry reviews from one journal to another, posting reviewer comments along-

side the published paper, or running the traditional peer review process simultaneously

with a public review. The ACM SIGMOD conference has also been experimenting vari-

ations of the classical peer review model where papers are evaluated in two phases,

where the first phase filters out papers that are unlikely to be accepted allowing to

focus the reviewers’ effort on a more limited set of papers. In this paper we provide

a model for multi-phase review that can improve the peer review process in the sense
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of reducing the review effort required to reach a decision on a set of submitted papers

while keeping the same quality of results (see Section 9).

As we have already mentioned, one of the main issue in peer review analysis is

to have access to the data. We experienced the same problems in collecting our data.

However, our work differs from the others we mentioned in this section for the scale

of the analysis, in terms of number of papers and reviews taken into consideration.

In other works, authors have been restricted to analyze only 1-2 conferences, grant

applications processes or fellowships. Just to name a few: (Reinhart M., 2009) analyzed

496 applications for project-base funding; (Bornmann and Daniel, 2005a) studied the

selection process of 1,954 doctoral and 743 post-doctoral applications for fellowships;

(Bornmann et al, 2008b) analized 668 applications for funding; (Godlee et al, 1998)

involved in their experiments 420 reviewers from the journal’s database; (Goodman

et al, 1994) analyzed 111 manuscripts accepted for publication. A very recent work

(Cabanac and Preuss, 2013) has been published where the authors have analysed 42

peer-reviews conference in Computer Science, but focusing only on the order effects in

the bids for paper reviews.

In the present analysis, we succeeded in collecting 10 conference review data, for a

total of 9,032 reviews, 2,797 submitted contributions and 2,295 reviewers.

3 Approach to Peer Review Analysis

This section presents our proposed framework for the analysis of peer review data. We

first discuss the metrics we aim to measure from the available data and explain why

we focus on them. Then we introduce the model and notation to describe peer review

processes that we use in the later sections for our analysis.

3.1 Metrics for Peer Review

We propose two classes of metrics for peer review: (1) metrics to study if peer review

“works” and (2) metrics to identify good properties of peer review.

The first class of metrics is really at the heart of the problem of finding scientific

evidence in support of peer review. Defining what we want out of peer review is consid-

ered a challenging topic in itself (Smith R., 2006; Jefferson et al, 2002a) and it is often

a matter of opinions. Both from our experience and from the literature, e.g., (Lock, S.,

1994; Godlee et al, 1998; Kassirer and Campion, 1994; Smith R., 2006), peer review is

considered to have one or more of the following goals:

1. Identify and select papers that are likely to have a relevance and impact in the

future. In the case of projects, select proposals that are more likely to have an

impact on science, business, or the society at large.

2. Identify papers that are likely to be of interest to the readers (for journals) or

attendees (for conferences).

3. Spot errors in the paper and give feedbacks to authors so that they can realize a

better paper.

In the following we do not focus on the third item, both because in our analysis we

are concerned with understanding the ability of peer review to identify and select good
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papers and because this specific point have already been studied in the past (Goodman

et al, 1994; Godlee et al, 1998).

Trying to measure impact is one of the highly debated topics in scientific dissemina-

tion and evaluation, also because it is one of the main factors considered in evaluating

job applications in the academia and research labs (so it has a significant and direct

impact on people’s life). To identify commonly accepted metrics for this, we looked

both at how committees evaluate scientific impacts of candidates and at how 10-years

award committees operate when they need to look back at papers published 10 years

earlier. Selection and evaluation committees consider number of publications (possibly

weighted by impact factor or other means) or, more recently, citation-based metrics

(citation count, h-index, g-index, etc) (Krapivin et al, 2010). In some cases, selected

publications of short-listed applicants are reviewed by the committee members to fur-

ther assess their quality. Our team has been involved in supporting 10-years awards

committees for major conferences in computer science, and the criteria there are not

dissimilar: papers are screened by citation counts and then looked at by the committee.

In our work we take the same stand in finding metrics for impact: we consider cita-

tion count, and we consider an a-posteriori review of the papers (and even of extended

version of the papers that report on further detail and on further elaboration of the

work). These are the baselines over which we assess the validity of peer review and in

the following sections we describe in detail how we measure them and compare with

peer review data 2.

In essence, we try to see how the ranking coming out of peer review is close or far

with respect to those coming out of citation counts or additional reviews of the same

work (sometimes more detailed versions of the same work).

As for the second goal above (interestingness), the way we measure it is by looking

at the ability of a review process to predict the average opinion of the entire program

committee (PC). In the domain of information engineering and computer science, pro-

gram committees of conferences are often very large, and in important conferences they

typically range from 100 to 300 members, typical with and hierarchical organisation

(e.g., general chair, regional chairs, meta-reviewers, reviewers). As such, the PC is a

good approximation of the community of interest of the conference, and therefore es-

timating the opinion of the PC is a reasonable approximation of the interestingness of

a paper for the target community.

Our approach to analyze review data is therefore driven by the needs of: (i) mea-

suring or estimating the above metrics and their correlation with peer review; (ii)

understanding and explaining the results, in addition to provide the numbers, also in

a way that is intuitive and that give readers a feel for how well peer review works.

In our analysis we also compute other metrics (for example, metrics of agreement

among reviewers (often called reliability in the literature) and robustness and this is

because they all contribute to our main goal of establishing the validity of peer review.

2 Notice that this pragmatic choice does not imply that the authors believe blindly in citation
count as being the only measure of impact. Indeed prior art has shown that it has some
flaws (Krapivin et al, 2010) and could be extended to other novel metrics like number of
downloads (Li et al, 2012) or other alternatives metrics (Bollen et al, 2005). However, we
adopt it as it is a commonly accepted and accessible metric.



9

3.2 Peer Review Model

We present here a model for peer review that covers many types of submission and

review procedures, including conferences submission, project proposals, and PhD thesis

proposals assessment. The model focuses on bulk submission, where several proposals

are sent by a deadline and are evaluated by a committee. This is to fit the analysis

needs for the data we have which is mostly conference data. In this regard, we observe

that in the area of information engineering and computer science, where most of the

data comes from, conferences are the primary outlet for publications and are often

regarded as reputed or even more reputed than journals (Chen and Konstan, 2010;

Freyne et al, 2010). Conference data also makes it possible to have information on

rankings of papers by a committee, and as we will see this enables certain kinds of

analyses that are useful for understanding peer review processes.

In bulk submissions, peer review procedures usually proceed along the following

steps. Authors submit a set C = {Cz}, z = 1, 2, ..., N of contributions for evaluation by

a group E of experts (the peers, also called reviewers). Each contribution is assigned

to a number of reviewers. Its flow through the process may be supervised by senior

reviewers (a set SR ⊂ E of distinguished experts that analyze reviews and help chairs

take a final decision on the contribution). One typical setting for conferences is to have

three reviewers and zero or one senior reviewer per paper. In the general case, each

contribution may be assigned to a variable number of reviewers.

The review occurs in one or more phases. We denote with NP the total number of

phases. In each phase pk, contributions are assigned, marks are given, and contributions

that are allowed to proceed to the next phase are selected. The next phase may or

may not require authors to send a revised version of the contribution. At the end of

each phase there is a discussion over the reviews (possibly involving author feedback).

Some processes require the discussion to end in a “consensus” result for the final mark

(this is typically the case for example in PhD thesis proposals assessment, where the

committee members must come to a consensus result). In all cases, the discussion results

in a decision on whether each contribution is accepted or not. The entire process is

supervised by a set CH ⊂ E of chairs.

For example, a typical conference has a one-phase review, with discussion at the

end leading to acceptance or rejection of each paper. Some conferences, such as ACM

SIGMOD in the past, had a 2-phase review process where in the first phase each paper

was assigned to two reviewers and only papers that have at least one accept mark go

to phase two and are then assigned to a third reviewer. This is done to minimize the

time spent in reviewing (or, seen differently, to focus the effort on papers that are not

clear rejects). Regarding journal review processes, the editor-in-chief often acts as a

first filter always in order to minimize the review workload.

Given the above, we model a phase pk of a peer review process as follows:

Definition 1 A phase p = (C, E ,M, π, γ, σ, ρ,A) of a peer review process consists of:

• a set C = {Cz}, z = 1, 2, ..., N of contributions submitted for evaluation;

• a set E of experts, which includes:

– a set CH ⊂ E of chairs that supervise the review process

– a set SR ⊂ E of distinguished experts (sometimes called senior reviewers) that

analyze reviews and help chairs take a final decision on the contribution

– a set R ⊆ E of experts that act as reviewers of the contributions

and s.t. CH ∪ SR ∪R = E
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• a set M of mark sets, M = {M1, . . . ,Mq}, where q is number of criteria and for

each mark set a total order relation ≤ always exists. Acceptance threshold, denoted

by tj may be defined for each mark set Mj , j = 1, 2, ..., q.

• an assignment function π : C −→ P(R) × P(SR) assigning each contribution to

a subset of the reviewers and a subset of the senior reviewers (an element of the

respective powersets P).

• a scoring function γ : {c, r} 7→M1 × . . .×Mq such that c ∈ C and r ∈ π(c). This

function models the marks assigned by each reviewer.

• a score aggregation function σ : M1 × . . . ×Mq −→ R. This models the way in

which in some review processes one can derive an aggregate final mark based on

the individual marks.

• a ranking function ρ : C −→ N
• a subset A ⊆ C that denotes the accepted contributions.

In the next Sections we will introduce a number of novel metrics based on the above

model and useful for our exploration and analysis of the different dimension of quality

of the peer review process.

3.3 Divergence

As the final result of the peer review process in conferences and candidate selection

often includes a ranking (sometimes publicly published; other times only the list of ac-

cepted contributions is published), in our subsequent analysis, we often need to quan-

titatively assess the difference - in terms of concrete effects - between two rankings

coming from different review processes or from a review process and a ranking deter-

mined from another quality metric. Examples are the difference between the ranking

(of the same contributions) coming from the peer review process and the one, a pos-

teriori, coming from citations; or the ranking coming from a preliminary evaluation of

e.g. an extended abstract and the one from a subsequent and deeper evaluation, e.g.

full paper.

In the literature, the typical metric for measuring a difference between two rankings

is the Kendall τ rank correlation coefficient (Kendall M.G., 1938). The Kendall τ

coefficient is also used as a test statistic in a statistical hypothesis test to establish

whether two rankings may be regarded as statistically dependent. This metric, however,

computes the difference in the exact position of the elements between two ranks, while

in the review process the main issue is not to be in 3rd or 10th position, whether to

be accepted versus to be rejected.

To better capture this specific property and to give readers a more intuitive way

to grasp the distance, we also use a measure called divergence to compute the distance

between rankings. We next give the formal definition of divergence following (Krapivin

et al, 2010), that was adapted to our scenario.

Definition 2 (Divergence) Let C be a set of submitted contributions, n = |C| the

number of submissions, ρi and ρa, respectively, the ideal ranking and the actual rank-

ing, and t the number of accepted contributions according to the actual ranking. We

call divergence of the two rankings Divρi,ρa(t, n, C) the number of elements ranked in

the top t by ρi that are not among the top t in ρa.

The normalized divergence NDivρi,ρa(t, n, C) is equal to
Divρi,ρa (t,n,C)

t , and varies

between 0 and 1.
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Fig. 1: Examples of different divergence curves. The index t in the X axis represents

the top t contributions that are considered by the divergence. The Y axis shows how

many items among the top t in the first ranking are also among the top t in the second

ranking. The Divergence values (Y axis) are normalized by t.

Through this metric it is possible to assess how much the set of the contributions

after one ranking procedure diverges (is different) from the set of contributions after

another ranking procedure. Figure 1 schematically depicts three different divergence

curves resulting from the fact that (i) the two rankings are correlated ; (ii) they are

independent (the analytical results for this case is the straight line in the figure) 3; iii)

they are inversely correlated.

In the rest of the paper we will use this metric to assess the effect of variations in

the peer review process. In particular, the effect of unbiasing algorithms (Section 7)

and to assess the overall validity of the peer review process (Section 8).

4 Data Set description

In this work we have analyzed data gathered from ten conferences that took place

from 2003 to 2010, whose topics were related to the computer science domain (Table

1). Among these, there are five conferences (C1, C3, C8, C9, C10) which took place in

the period from 2003 to 2006, therefore they are “old” enough for checking the impact

of the accepted papers during the years (Section 8).

As the data we used for the analysis are confidential we cannot disclose the name

of the conferences. So we use an ID to identify the conference and we only report

approximate numbers in Table 1 to guarantee the anonymity of the original data.

In Table 1 for each conference we show (i) the conference ID; (ii) the approximate

number of papers submitted to the conference; (iii) the scale used by reviewers to

assign marks to papers; (iv) the typical number of reviews per paper (RPP) and (v)

of papers per reviewer (PPR) and (vi) the acceptance rate of each conference. The

RPP and PPR reported in Table 1 are the most frequent values for each conference

(specifically, those occurring for more than 10% of the times for that conference). It

3 when the second ranking is random, the formula for the divergence can be expressed

analytically as NDivρi,ρa (t, n, C) =
Pt
i=0 pt(i, n)wi, where pt(i, n) =

CtiC
n−t
t−i

Cnt
and wi = t−i

t
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Conf. ID No. of papers Rating scale No. of RPP No. of PPR Ac. rate
1 2 3 4 5 6

C1 900 1,2,...,10 3-4 1-4 21%
C2 250 1,2,...,7 3-4 1,2,9,10 16%
C3 700 0,0.5,...,5 3 >3 27%
C4 200 0,0.5,...,5 3 1-2 26%
C5 200 -3,-2,...,3 3-4 1,2,7 31%
C6 150 1,2,...,5 3-4 1,2,>5 33%
C7 120 -3,-2,...,3 3-4 6-8 22%
C8 150 1,2,...,7 3 4,5 45%
C9 40 1,2,...,4 2-4 2,4,5,7 51%
C10 100 1,2,...,7 2-3 5-6 55%

Table 1: Description of the conference data.

is in fact quite normal that in one conference a paper is reviewed on average by three

reviewers, but sometime, in particular for some disputed papers, there could be more

than three reviewers. So we see from the table that while the typical number of reviews

per paper (RPP) is constantly - in our data set - around 3-4, the number of paper

assigned to reviewer (PPR) is more variable and some reviewers get an higher number

of papers to review. All together our dataset consists of 9,032 reviews, 2,797 submitted

contributions and 2,295 reviewers.

5 Quality: Preliminary study

Before starting the detailed description of our quality analysis, we first describe here a

simple statistical analysis of our data set in order to put our results in the appropriate

context. Moreover, we start to use the methodology to investigate the differences among

different rankings described in Section 3.3 and apply it to a robustness analysis of the

peer review process.

5.1 Mark distribution analysis

A very simple analysis is to look at the distributions of the marks (following the

experimental scientist’s motto: “always look at your data”). Analyzing the distribution

of marks in review processes with different mark scales, we notice that the way reviewers

give marks can be influenced by the scale itself. In Figure 2 we plot distribution of marks

from processes from three conferences where marks range 4:

(1) from one to ten (no half-marks);

(2) from one to seven (no half marks);

(3) from zero to five with half-marks.

In case (1) the distribution is slightly positively skewed and this finding is also

confirmed in the recent study in (Cabanac and Preuss, 2013).

In case (2) reviewers tend not to give the central mark (4 in this case), but to give

lower or higher marks (in this specific case the most frequent mark is 2). It seems that

the use of the scale (2) “supports” the reviewer to take a decision, avoiding the central

mark which corresponds to a neutral mark. Indeed in a (1,7) scale it is easy to identify

mark 4 as borderline, and this is somehow reflected in the observed distribution.

4 In Figure 2 the different scales have been normalized in the x-axis
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Fig. 2: Examples of normalized mark distributions in conferences with different scales

In case (3) we notice that reviewers tend not to give half marks, indeed the curve has

many oscillations with minima corresponding to such half marks; while if we consider

case (1) - essentially the same scale, i.e a doubled scale with integer marks from zero

to ten instead of half marks - the mark distribution appears concentrated around the

middle of the ratings scale.

As a general remark, we were surprised by how much the mark distribution changes

based on the specific scale chosen.

5.2 Robustness analysis

A mark variation sensitivity analysis is useful in order to assess if a slight modification

of the value of marks could bring a change in the final decision about the acceptance or

rejection of a contribution. The rationale behind this analysis is that we would like the

review process to be robust to minor variations in one of the marks. When reviewers

need to select within, let’s say, a 1-10 score range of criteria, often they are in doubt

and perhaps sometimes carelessly decide between, for example, a seven or an eight (not

to mention the problem of different reviewers having different scoring standards, see

Section 7).

With a robustness analysis we try to assess how much a slight difference in the

mark value can affect the final (positive or negative) assessment of a contribution. To

this end, we apply a stochastically positive/negative perturbation δ to each mark. This

perturbation must be a multiple of a mark granularity g of the process (e.g., g = ±0.5),

δ = i ∗ g, where i = 1, 2, 3. The value of δ is therefore chosen according to the specific

rating scale of the conference.We then rank the contributions with respect to these new

marks and repeat the simulation a number of runs to collect proper statistical data

(i.e. mean value and standard deviation) for every simulated case.

Intuitively, what we do with the mark variation is a naive way to transform a mark

into a random variable with a certain variance, reflecting the indecision of a reviewer

over a mark. Actually, we would like to know how this variation could change the fate

of the papers (the papers are ranked according to their marks), i.e. how many papers

that are above (below) the threshold, e.g., acceptance threshold, will appear below

(above) the threshold after the variation.
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Fig. 3: Schema for the robustness analysis for a fixed window of papers and corre-

sponding threshold. The rounded arrows indicate the types of relevant cases for a

paper within the window to change its fate due to a perturbation on its marks.

Here we assume that the main criteria of the PC for accepting/rejecting a paper

is acceptance rate and not paper quality only. Hence, we assume that the number of

accepted papers must remain the same, regardless of paper marks.

To this end, we have developed an algorithm that computes the percentage of the

papers which have changed their fate within a specific window after a small variation

of the marks. The size of the window can be arbitrary chosen depending on the number

of contributions for the specific conference. We are also interested in studying how the

status (accepted/rejected) of the papers changes with respect to different “acceptance”

thresholds, thus we used sliding windows centered on a variable “acceptance” threshold

in order to compute the percentage of papers within the window that change their

fate (a schema of the procedure is represented in Figure 3). We assume that a paper

changes its fate after perturbation if the comparison of the original paper ranking and

the perturbed ranking shows that:

1. the paper has moved from one side of threshold to another side within the window,

e.g. the two smaller rounded arrows in the Figure 3;

2. the paper has moved from one side of the threshold within the window to another

side of the threshold outside the window, e.g. the two larger rounded arrows in the

Figure 3.

We used the above procedure to computed the percentage of papers that change

their fate for the two largest conferences in our dataset (C1 and C3) for a fixed sliding

window of 100-papers. We have investigated the robustness of the two review processes

considering a range of thresholds (i.e. centers of the sliding windows that represents

different number of accepted contributions) in increments of 50 accepted papers. The

results of this computation are shown in Figure 4. We chose g = 1 and g = 0.5 for C1

and C3 correspondingly to the respective rating scales.

The analysis shows that the percentage of papers that changed their fate due to a

perturbation of the marks is lower in the beginning and in the end of the ranking list.

This reflects the obvious fact that papers at the top and at the bottom of the ranking

have very clear marks (e.g., close to 10 at the top and copse to 1 at the bottom if the

range is between 1 and 10): in this case the applied perturbations have a reduced effect

on their fate. Nevertheless, in both conferences and in these ranges (top and bottom)

the percentage of affected paper for even the smaller perturbation is around 15-20%.
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Fig. 4: Robustness curves for conferences C1 (left) and C3 (right) with fixed sliding

window = 100 observations. Granularity is g = 1 for C1 and g = 0.5 for C3. The x-axis

shows the (variable) number of accepted paper used in the computation

In the middle part of the ranking, already the minimal perturbation of δ = g can lead

to a 30-35% change in the fate of papers in a wide range of acceptance thresholds.

We believe that calculation of these kind of robustness curves may help program

committees to make a more informed decision about the acceptance threshold, as they

can estimate the influence of perturbation of different threshold on the final ranking

results. For instance, in the case of the analyzed conferences we found that even the

smallest perturbation δ = g can change the fate of ca. 33% of papers for C1 with the

nominal acceptance rate of 21% - ca. 180 accepted papers - and of ca. 38% for C3 with

the nominal acceptance rate of 27% - ca. 210 accepted papers 5.

If the review process chairs would have known these results (and these type of

calculations could easily be a feature of current conference management systems) they

could have decided to conduct additional reviews to make a better distinction between

papers around the selected thresholds.

5.3 Preliminary analysis: lessons learned

From the above analysis we can derive some useful insights and recommendations:

• Monitoring mark distribution is a simple analysis but very useful in order to un-

derstand “how” reviewers use the scale and if there are nonfunctional uses of the

scale itself. It could also be convenient for the program chairs to design and adapt

the scale for specific purposes.

• The mark distribution analysis can be coupled with a robustness analysis of the

whole process in order to investigate how stable the process is w.r.t perturbations

in the marks. Such analysis can provide review chairs indication if and for which

papers conduct additional reviews to make a better decision on papers close to the

acceptance/rejection threshold.

5 See Table 1 for the nominal acceptance rate for all conferences
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6 Quality: Reliability

Human decisions are classified as reliable when different persons come to the same

or similar conclusions (Ebel R.L., 1951; Reinhart M., 2009). In traditional analysis of

opinion reliability, the degree of agreement between people opinions is determined. In

this section we first perform a classical analysis in this dimension, then we introduce

and investigate some new metrics (namely, disagreement and band agreement) to assist

us in the investigation of the reliability from different points of view.

The rationale behind these analyses and related metrics is that in a review process

we expect some kind of agreement between reviewers. While it is natural that reviewers

have different opinions on a given contribution, however, if the marks given by reviewers

are comparable to marks given at random, then the results of the review process are also

random, which defeats the purpose. The reasons for having reviewers (and specifically

for having the typical number of 3 reviewers per contribution) is to evaluate based on

consensus or majority opinion.

In the literature various methods are commonly used for the statistical measure

of reliability: e.g. the Kappa coefficient proposed by (Cohen, 1960), its extension the

weighted Kappa proposed in (Fleiss, 1971) and the Intraclass Correlation Coefficient

(ICC) (Bornmann and Daniel, 2010a), (Reinhart M., 2009), (Cicchetti et al, 2008),

(Montgomery et al, 2002). In our work we have chosen to use ICC as its usefulness

and applicability in the social sciences has been demonstrated in many applications

(Ebel R.L., 1951). Intraclass Correlation Coefficient was first introduced by Fisher in

(Fisher R.A., 1925). ICC returns the value 1 for complete agreement while the value 0

corresponds to the agreement level for a random process. The technique for computing

ICC is based on the framework of the analysis of variance (ANOVA) and the estimation

of a number of variance components.

There exist various forms of the ICC depending on the particular target process:

one-way random effects model, two-way random effects model with or without inter-

action, two-way mixed model with or without interaction, and average score ICCs for

one-way and two-way models. A detailed discussion on the distinction between the

different coefficients could be found in (McGraw and Wong, 1996), (Shrout and Fleiss,

1979), (Bartko J.J., 1966), (Bartko J.J., 1974), (Donner A., 1986). In our study we

have used the average score ICC for one-way model (McGraw and Wong, 1996) for as-

sessing the inter-rater reliability in our 10 conferences (see Table 2). The average score

ICC is in fact used in the case when the decision about the object in consideration is

based only on the average mark (as in our case). The one-way model is used when the

identity of the rater is not important: in our case we are interested only in the mark

correlations not in reviewer feature correlations (e.g. identity, past behavior etc.).

In order to interpret the results collected in Table 2, we can recall that in the field

of biostatistic analysis reliability measures below 0.4 are rated as poor, between 0.4 and

0.59 fair and above 0.6 high (Cicchetti and Sparrow, 1981). The same classification has

been used to access the reliability of reviewers recommendations for grant applications

in biology and medicine in (Reinhart M., 2009).

According to the above classification, in our case we have 6 conferences with ICC >

0.6, i.e. with significant correlation, 3 conferences with a fair correlation (0.4 < ICC <

0.59) and 1 conference with poor correlation among raters (ICC < 0.4). In Table 2 we

also report two other statistical parameters useful to evaluate the statistical significance

of the results, namely: the 95% Confidence Intervals (CI) for the computed ICC and the

related probability values (i.e. p-value). According to the computed p-values reported
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in Table 2, all computed correlations are statistically significant (p-value > 0.005)

regarding the following null hypothesis H0 : ICC = 0(H1 : ICC > 0). In other words,

the obtained ICC coefficients are not equal to zero (agreement of a random process)

with a probability of 95%.

Conference ID ICC 95% CI p-value reliability level
C6 0.76 (0.68; 0.82) 9.02E-27 High
C9 0.72 (0.46; 0.85) 8.54E-05 ”
C7 0.63 (0.5; 0.73) 2.94E-11 ”
C5 0.61 (0.49; 0.7) 2.43E-13 ”
C1 0.61 (0.56; 0.65) 2.22E-63 ”
C8 0.60 (0.46; 0.7) 3.07E-10 ”
C2 0.57 (0.47; 0.66) 5.81E-15 Fair
C4 0.52 (0.39; 0.62) 3.03E-10 ”
C10 0.45 (0.16; 0.63) 0.00254 ”
C3 0.39 (0.3; 0.46) 1.12E-14 Poor

Table 2: Intraclass Correlation Coefficient, 95% Confidence Interval and related p-value

for reviewers’ ratings scores, sorted in decreasing order of ICC value.

However, as the classification of the intervals for ICC were defined in an arbitrary

way, there is no clear evidence of the correctness to apply them in our case. Therefore, in

the following sections we have investigated additional metrics measuring the agreement

among reviewers in order to better understand the difference in the various reviewing

processes in our dataset.

6.1 Disagreement

In this section we look at the problem of measuring agreement among reviewers from

a different perspective, i.e. measuring the disagreement among them as a refinement

of inter-rater agreement coefficients specific for conference peer review processes. We

underline here that disagreement per se is not necessarily a bad thing: novel and non-

obvious ideas are often controversial (Grudin, 2010; Birman and Schneider, 2009),

and different reviewers may give different importance to separate contributions in the

paper. The problem of disagreement surfaces when papers are rejected merely because

of averaging the scores of different reviewers.

Here, we compute first how much the marks of a reviewer i differ from the marks

of the other rz − 1 reviewers for a specific criterion j and for a specific contribution

z (Definition 3). Then we compute the disagreement of a reviewer i for a specific

contribution z for all the criteria (Definition 4) and average disagreement for each con-

tribution through all its reviewers (Definition 5) and, finally, over all the contributions

(Definition 6).

Definition 3 (Disagreement of a reviewer on a criterion and on a contribution)

Let j be a criterion and Mj
iz

be the mark set by the reviewer i for the criterion

j assigned to a contribution z. Then, a disagreement φjiz among rz reviewers on a

contribution z is the euclidean distance between the mark given by the reviewer i, and

the average µjiz of those given by the others rz − 1 reviewers:
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φj
iz

=| Mj
iz

-µj
iz
|

with:

µj
iz

=
1

rz-1
·

X
k={1,....,rz}�{iz}

Mj
kz
. (1)

Definition 4 (Disagreement of a reviewer on a contribution)

Let q be the number of criteria in a review phase, then the disagreement of a reviewer

i on a contribution z is:

γiz =
1

q
·

qX
j=1

φj
iz

(2)

Definition 5 (Disagreement of a review phase on a contribution)

Let rz be the number of reviewers in a review phase on a contribution z, then the

disagreement of a review phase on a contribution is:

Γz =
1

rz
·

rzX
i=1

γiz . (3)

Definition 6 (Disagreement of a review phase) Let n be the number of papers in a

review phase, then the disagreement over all the papers is:

Ψ =
1

n
·

nX
z=1

Γz . (4)

Conf. ID Computed Reshuffled Random

Difference
between Com-
puted and
Reshuffled
disagreement

Difference
between Com-
puted and
Random dis-
agreement

1 2 3 4 5 6
C9 0.30 0.43 0.54 30.2% 44.4%
C6 0.26 0.37 0.52 29.7% 50.0%
C7 0.25 0.34 0.48 26.5% 47.9%
C5 0.26 0.35 0.45 25.7% 42.2%
C2 0.30 0.40 0.49 25.0% 38.8%
C8 0.34 0.44 0.51 22.7% 33.3%
C1 0.28 0.36 0.43 22.2% 34.9%
C10 0.26 0.32 0.48 18.8% 45.8%
C4 0.22 0.26 0.52 15.4% 51.1%
C3 0.26 0.29 0.44 10.3% 40.9%

Table 3: Normalized average disagreement for all conferences sorted by decreasing

order of the differences between computed and reshuffled disagreements (column 5).

Each experiment consisted of 10 independent runs of the simulations. Average standard

error is ca. 0.05 in all simulations.

In the second column of Table 3 we present the normalized computed average dis-

agreement of a review phase (Definition 6) for all 10 conferences. We have normalized
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the disagreement value in order to allow direct comparisons among different confer-

ences. To assist in the interpretation of the results, we also report in the same table,

the average disagreement we have obtained in two simulations 6:

1. reshuffle experiment (third column): where we have randomly exchanged the ac-

tual marks given by the reviewers;

2. random experiment (fourth column): where we have generated a new random

(uniform) distribution of marks in the available range of marks unrelated with the

actual marks distribution in our data set.

The reshuffle experiment mimics the case in which one reviewer is marking a certain

number of contributions, but her/his marks are randomly given to other unrelated

contributions, while her/his reviewed contributions get the marks of other randomly

selected reviewers. So we are sampling from the actual mark distribution function,

i.e. the one of the analyzed review process, but we randomize the association between

marks and contributions.

We would have expected these reshuffling disagreements to be much higher than

the one computed with properly assigned marks since, again, we would have expected

higher correlations between the opinions of a team of experts. For conferences C3, C4

and C10 the differences between original and reshuffled disagreements (fifth column

in the table 3) are only 10.3%, 15.4% and 18.8% correspondingly, while for other

conferences they vary from 23 to 30%). On the other hand, the computed average

disagreement is constantly lower than the random one, from 33% to 51% (the sixth

column in the table 3). This is expected since we would hope that a group of experts in

a domain would tend to agree better than a completely random process. These results

are consistent with the previous analysis where C3, C10 and C4 had the lowest ICC.

Moreover, we applied the Welch’s test (Welch B. L., 1947) to verify if the differences

between the computed disagreement value and the one based on reshuffled marks were

statistically significant. As detailed in the following, the test shows that the differences

are indeed significant. Welch’s test was applied to compare the mean values (definition

6) for two pairs of samples formed by disagreement on contribution (definition 5). The

first pair of samples was:

1. values of disagreement on contribution (definition 5) calculated for original marks;

2. values of the same metric calculated for reshuffled marks.

The second pair of samples used also the disagreement on contribution but compared

original and random marks. The tests showed that for all the conferences the mean of

the sample based on original marks is lower than the means of the samples based on

reshuffled and random marks with confidence level α = 0.05 (corresponding p-values

varied from essentially zero (2.2×10−16) - to 0.009), i.e. the differences are statistically

significant.

6.2 Band Agreement

In order to further explore the reliability dimension, we introduced a new measure that

we coined band agreement. Our goal here is to study the agreement in the decisions of

reviewers about very good and very bad papers.

6 also in these numerical experiments we repeated the simulations a number of runs (typ-
ically 10) to collect proper statistical data (i.e. mean value and standard deviation) for each
experiment
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The approach is based on clustering review marks in “bands” and measuring the

probability of giving a mark from a particular band in the condition that a mark from

another band has already been given 7.

1 2
C1 C2 C3 C1 C2 C3

band “strong reject” 1-2 1 0-1 190 50 90
band “weak reject” 3-4 2-3 1.5-2 550 200 280
band “borderline” 5-6 4 2.5-3 600 80 460
band “weak accept” 7-8 5-6 3.5-4 550 150 500
band “strong accept” 9-10 7 4.5-5 130 20 220

Table 4: Partition of marks into “bands” according to the conference rating scale (col-

umn 1) and approximate number of papers with at least one mark from a particular

band (column 2)

To this end, all marks have been divided into non overlapping bands (see Table 4):

(i) strong reject; (ii) weak reject; (iii) borderline; (iv) weak accept; (v) strong accept.

Then, we have computed the overall probability of a paper to belong to each group.

We have analyzed the behavior of reviewers in 3 different conferences (C1,C2,C3)

with a high number of papers with marks from each “band” (Table 4) and different

levels of ICC:

• C1 without threshold for marks for acceptance and with “high” ICC agreement;

• C2 without threshold for marks for acceptance and with “fair” ICC agreement;

• C3 with threshold for marks for acceptance and with “low” ICC agreement.

The results are shown respectively in Figure 5, 6 and 7.

We note that for C1 and C2 (without threshold) when a reviewer gives a strong

reject mark (i.e. from the strong reject band; dashed line in all figures) then the prob-

ability that other reviewers will give a mark from the weak or strong reject “band” is

higher: these probabilities are significantly bigger than the overall probability that is

shown in all figures with a black solid line. The same can be said about the “strong

accept” band. So, in both cases we can say that reviewers seem to agree on very good

and very bad papers.

For C3 (review process with a threshold mark for acceptance) the situation is

different: overall probability is skewed in the direction of “weak accept” band. Here,

we can suggest that when there is a mark threshold reviewers tend not to give very

low marks since they know that even a mark from a “borderline” band and under

the threshold will eventually “kill” a contribution (they tend to be polite!). A more

detailed analysis shows that if somebody gives a mark from the “strong reject” band,

this increases the probability of giving marks not only from strong and weak reject

bands (by 14% and 63% correspondingly) but also from borderline band (by 11%).

In the “strong accept” set the probability of others giving a “weak accept” mark is

20% higher than the overall probability, but the probability of giving marks from other

bands are almost the same as the overall probabilities. Therefore, we can say that we

have marks skewed towards the “weak accept” and reviewers still agree on very bad

contributions while disagree on very good.

7 Please note that in our reviews dataset the reviewers did not have access to other’s re-
viewers marks, so they could not have been influenced by previous reviews.
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Fig. 5: Band Agreement for C1 (“high” ICC agreement)

Fig. 6: Band Agreement for C2 (“fair” ICC agreement)

Fig. 7: Band Agreement for C3 (“low” ICC agreement)
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6.3 Reliability: lessons learned

Through the measure of agreement/disagreement/band agreement among reviewers we

derive the following findings:

• the measurement of the disagreement among reviewers is a useful metric to check

and monitor the degree of process randomness. In particular, the disagreement is

more useful than merely a statistical analysis of the degree of agreement since in

this case we lack a clear reference process to compare with. Moreover, having a high

disagreement value means, in some way, that the judgment of the involved peers is

not sufficient to state the value of the contribution itself. So the monitoring of the

disagreement metric could be useful to improve the quality of the review process

as could help to decide, based on the disagreement value, if the used number of

reviewers per contribution is enough to assess the contribution or if more reviewers

are needed in order to ensure an higher quality process.

• from the Band Agreement analysis we see that reviewers tend to agree on very

good and very bad papers, except when the mark scale has a threshold. Moreover,

band agreement results are consistent with the previous findings on the degree of

agreement between reviewers.

7 Quality: Fairness

A review process is fair if and only if the contribution is judged solely on the basis of

its scientific merit. Other data such as submission date (Cabanac and Preuss, 2013),

personal information, specific attributes of authors, such as their age, gender, nation-

ality, academic post or number of previous publications and related impact should not

influence the assessment.

There are numerous studies on the different kinds of biases of the peer review

processes (see Section 2). Different sources of bias such as affiliation, topic, country,

gender, clique bias have been also analyzed by using multiple logistic regression models

in (Hosmer and Lemeshow, 2000). Unfortunately, in the collection of our datasets we

were not provided with specific author information such as age, nationality, gender

or other. In the framework of our present study, we therefore focused on the analysis

of the rating bias, namely when reviewers are positively (negatively) biased i.e., they

consistently give higher (lower) marks than their colleagues who are reviewing the same

proposal. We briefly note that the procedure described in the following can be easily

extended to other types of bias if the data (missing in our data set) would be available.

The way to compute the rating bias value is very similar to that described for the

disagreement metric (see Eq.3) i.e.:

φj
i = Mj

i-µ
j
i . (5)

This time the sign of the equation is important in order to discover positive or

negative biases. Indeed, if the value of φji is constantly positive, this means the reviewer

tends to give always higher marks with respect to other reviewers on the same set of

contributions; while if the value of φji is constantly negative then the reviewer tends

to give always more negative marks than the other reviewers (always on the same set

of contributions). Another type of rating bias is the threshold bias, which occurs when

a reviewer gives marks that are always very close to the threshold for a given criteria
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(e.g. 3 in an evaluation scale form 1 to 5). This is computed by simply calculating the

variance of the given mark for the specific criteria.

As for the disagreement metrics, there are several scopes to which we can apply the

above bias metric. For example, we can measure the bias for a single reviewer and for

a particular criterion, the bias over a review phase, and the bias over all the criteria.

Once biases are identified, a number of actions can be taken by the review chairs.

One could be to compensate for the specific paper under review with additional reviews.

Another action could be to apply automatic or semi-automatic unbiasing algorithms.

A simple algorithm could be to modify the marks by adding or removing the bias

values so that on average the overall bias of the most biased reviewers is reduced. In

particular, if we take all reviewers r that have a bias greater than b and that have

done a number of reviews higher than nr, and subtract b from all marks of r (or from

the top-k biased reviewers), we can obtain a new debiased ranking. By comparing the

obtained debiased ranking with the original ranking (for instance using the divergence

metric - see Section 3.3 - that gives us the percentage of difference in rankings before

and after unbiasing at acceptance threshold) we can assess the overall impact of the

unbiasing procedure on the particular review process.

Applying the proposed rating bias metric, we were able to identify groups of po-

tentially behavioral biased reviewers on actual review data in all 10 conferences in

our dataset. These are all reviewers with an accepting or rejecting behavior with bias

greater than b, a threshold value that depends on the rating scale granularity. So we

could say that in our dataset acceptance is a function of paper quality but also of

chance of reviewer drawn. Table 5 reports for each analyzed conference:

1. the conference ID

2. the considered bias threshold b

3. the minimal number of reviews done by each reviewer (depending on the specific

review process statistics)

4. the percentage of reviewers with accepting biased behavior

5. the percentage of reviewers with rejecting biased behavior

6. the divergence at acceptance threshold, which is used to measure the percentage of

different papers between original and unbiased ranking.

The last column of Table 5 reports the percentage of papers affected by the proposed

simple unbiased algorithm. The table shows that even with the simple metric we are

proposing, it is relatively easy to detect rating biases. Moreover, following the simple

unbiasing algorithm outlined above, it is also possible to measure quantitatively the

effect of the bias on the review process. Depending on the specific conference, the

accepting/rejecting bias impacts from 7% to 14 % of the overall contributions.

7.1 Fairness: lessons learned

From the above analysis we can derive some interesting points of interest and recom-

mendations:

• the percentage of bias (e.g., accepting or rejecting behavior) is an important pa-

rameter to monitor by the review chairs and it is relatively easy to detect it through

the use of simple metrics. If chairs will detect high number of biased reviewers they

can decide to take some actions.
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Conference
ID

b nr

Reviewers
with ac-
cepting
behavior,
%

Reviewers
with re-
jecting
behavior,
%

Divergence
at accep-
tance
threshold,
%

C5 1 3 4 3 14
C9 0.5 3 11 7 14
C2 1 3 7 7 12.5
C8 1 3 17 16 11
C1 1 3 5 4 10
C3 0.5 3 8 5 9
C4 0.5 2 3 3 9
C7 1 4 6 3 8
C6 0.5 3 1 2 7
C10 1 3 5 13 7

Table 5: Percentage of reviewers with accepting/rejecting behavior (column 4-5) and

percentage of affected papers for 10 different review processes (column 1) sorted by

decreasing order of divergence values (column 6)

• it is also possible to devise simple and automatic unbiasing procedures; they do not

need to be applied as black boxes, but together with the analysis of the divergence

between the actual ranking and the unbiased one. Divergence provides quantitative

data about the effect of unbiasing on the final review process: it indicates the

percentage of papers in the accepted set whose fate is changed after applying the

unbiasing procedure. This information can be used by the program chairs to better

characterized and monitor the evaluation process: for example they can decide to

unbies the score of particular reviewers.

Our future work in the dimension of fairness-related metrics includes studying of

other types of biases related to affiliation, topic, country, gender, clique bias, different

level of expertise and other aspects rather than limiting the analysis to accepting or

rejecting biases. The challenge here is to collect and have access to the appropriate

specific metadata.

8 Quality: Validity

Validity is related to the final result of the review process, i.e., the final ranking of

the reviewed contributions. A review process is valid if it is able to select the best

contributions. It may be claimed that this is the most important characteristic of the

review process. However, not much research has been done on this topic, mainly because

it is difficult to choose a measure for best-object detection. A well-known index such

as citation count is a controversial measure of both quality and scientific impact of

scientific contributions (Bornmann et al, 2008b). Nevertheless, Lokker et al. (Lokker

et al, 2008) succeeded in demonstrating for clinical papers that publications regarded

- shortly after their appearance - as important by experts in the appropriate research

field were cited much more frequently in subsequent years than publications that were

less highly regarded. They used multiple regression model, checked the significance of

20 factors for 1,261 papers out of 105 most important clinical journals.

In our case, citation count was the main available measure, since other impact

metrics (like the novel metric of number of downloads) are at present not available in
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a straightforward manner. By using citation count for the analysis of the conference

peer review process, we tried to answer the question: how accurately did the selection

process predict the longer-term impact of a contribution in the selected domain, i.e.

Computer Science?

Moreover, for one case, namely conference C3, we could perform a similar question

but considering a two-phase review process. In fact, in C3 the reviewers were first

asked to evaluate some extended abstracts; only a fixed number of proposed abstracts

passes. Then, the selected authors provided the full contributions and this time the

reviewers evaluated the full papers. So for this case we could explore - for the same

accepted contributions - how accurately did the first review phase predicted the ranking

outcome of the second review (full papers) phase.

In our analysis we applied both the divergence measure and the Kendall τ -test

- introduced in Section 3.3 - to compare the ranking output of the review process

(using the obtained final marks of each contributions) and the ranking based on the

a-posteriori estimated citation counts for each contribution. Therefore, we restricted

the analysis to the set of accepted contributions A instead of the complete set of

submitted contributions C, as only for the accepted set we can have both reviewer’s

marks and citations. Moreover, we confined our analysis to the subset of relatively

“old” conferences, namely before 2006, so we were able to compute citations received

in the subsequent years using Google Scholar as the source for the estimate of the

citation count 8.

In Figure 8(a) we report the divergence between the ranking of the conference

C1 and the a-posteriori ranking based on citation counts. From Figure 8(a) we can

notice that the two rankings have a low correlation. Specifically, we can notice that the

computed divergence curve is near to the diagonal, which - we recall - is the limiting case

when two rankings are completely uncorrelated. We found similar divergence curves

for all other “old” conferences in our dataset.

While in Figure 8(a) we report the divergence value for the whole set of accepted

papers, in Figure 9(a) we report the divergence between the two rankings for only the

first 50% of accepted papers in C1. Also for these “top” papers, we can see again that

the correlation remains low.

The results of the Kendall τ test - comparing citation and original peer review

rankings for all “old” conferences9 - are collected in Table 6. Furthermore, we present

a Kendall τ test analysis applied to conference C3, where in place of citations we have

used the second-phase review ranking of the accepted extended abstract to compare

the rankings for the same contributions in the two phases.

Also for the τ test, we carried out the analysis for different sets of accepted paper

for large conferences, such as C1 and C3. Namely, first for the whole set, and then for

reduced sets of papers: 50%, 33% and 10% of the top accepted papers. We recall here

that a value of Kendall τ = 0 corresponds to independent rankings, τ = 1 to correlated

rankings and τ = −1 to inversely correlated rankings.

As we can see in Table 6 for only 2 out of 5 conferences (C8, C10) there is some

correlation between original and citation-based ranking, while for the other three in-

vestigated conferences the correlation is close to zero even for the “top” (50%, 33%

8 Although Google Scholar has been criticized in the literature (e.g. (Jacso, 2010) mainly
for the noise (spurious documents and citations) that it includes, it is however one of the few
publicly available source of citations as well as with a high degree of coverage.

9 Old conferences are the ones which took place in the period from 2003 to 2006, therefore
“old” enough for checking the number of citations received during the subsequent years.
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Fig. 8: Normalized divergence between original and citations-based rankings for confer-

ence C1 for all accepted papers: (a) on the left, peer-review ranking vs. citation-based

ranking on the left; (b) on the right, peer-review-unbiased ranking vs. citation-based

ranking.

Fig. 9: Normalized divergence between original and citations based rankings for con-

ference C1 for the top 50% accepted papers : (a) on the left, peer-review ranking vs.

citation-based ranking on the left; (b) on the right, peer-review-unbiased ranking vs.

citation-based ranking.

and 10 %) accepted papers. It is also interesting to note that the correlation between

the first and second phase review (conference C3) is also close to zero in all cases. All

results presented in Table 6 are statistically significant within a 95% confidence interval

against the null hypothesis (H0 : τ = 0).

We have also conducted Kendall τ test for citation-based and unbiased ranking

(i.e, ranking obtained applying the unbiasing procedure described in Section 7). In

some cases (C9) and in some reduced sets of “top” accepted papers (C1 and C3) the

correlation slightly improves. This is also visually confirmed in the divergence curves

computed for C1 and presented in Figure 8(b) for all accepted papers and in Figure 9(b)

for the top 50% accepted papers. For the two conferences with better correlation before
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Citations-based vs Citations-based vs
Original ranking Unbiased ranking

Conf. ID top paper % Kendall τ Kendall τ

C1

100% 0.078 0.074
50% 0.097 0.066
33% 0.127 0.134
10% 0.067 0.152

C8 100% 0.392 0.346
C9 100% -0.026 0.178
C10 100% 0.310 0.269

Second review vs Second review vs
First review Unbiased first review

C3

100% 0.054 0.078
50% -0.057 -0.064
33% 0.053 0.034
10% 0.087 0.134

Table 6: Results of Kendall τ -test for five conferences. Different set of papers were

used for the analysis of large conferences C1 and C3: 100% 50%, 33% and 10 % of top

accepted papers.

unbiasing (C10, C8), Kendall τ coefficient became lower after unbiasing but remained

statistically significant. From these preliminary results, we cannot say whether or not

the unbiasing procedure improves predictive validity of peer review process.

While examining the above analyses, one could argue that the aim of peer review

process is not the selection of high-impact papers, but is simply to filter junk papers

and accept only the ones above a certain quality threshold 10. However in our view, it

is important that the program chairs of a conference or a journal should decide their

target parameter. The above analyses provide the procedures to check a-posteriori the

validity of the review process w.r.t. a selected target measurable parameter.

To insure the validity of the peer review process the chairs may also decide to

control the accuracy of the paper’s ideal mark estimation. This approach is described

in the following subsection.

8.1 Evaluation of the accuracy of a review

We focus now our investigation on the measure of the accuracy of papers marks ob-

tained from the reviewers. By definition the “accuracy” of a measurement system is the

degree of closeness of measurements of a quantity to that quantity’s actual (true) value

(see for instance the True Score Theory about measurement). Our working hypothesis

is that the “true” mark is the one we would get in the ideal case we would be able

to collect reviews (and related marks) from all the experts in the community (see our

definition of the peer review model in Section 3.2).

We follow a standard statistical approach based on the assumption that for a large

number of reviewers the mark (x) of a given paper is a random variable with Gaussian

distribution N(µ, σ). The sample mean µ̂(n) = 1
n

Pn
i=1 xi for each contribution is

the estimation of the mathematical expectation value µ of the mark of paper, and it

converges to this value when the number of reviewers (n) tend to infinity. σ2 represents

the variance of the marks’ Gaussian distribution. We consider µ as the “true” mark for

10 This is the rationale behind some journals like PLoS ONE among others.
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the contribution, i.e. the value that we want to estimate using a specific peer review

process

The goal of a real peer review process is to choose the number of reviewers n so

that the error of estimation would be less than ε with probability (1− α):

P {|µ− µ̂(n)| < ε} = 1− α. (6)

i.e. µ falls into confidence interval (µ̂(n)− ε, µ̂(n) + ε) with confidence level (1 − α).

If σ is known, then confidence interval for unknown mathematical expectation µ with

confidence level (1− α) can be computed analytically as:

µ̂(n)− uα
2
· σ√

n
< µ < µ̂(n) + uα

2
· σ√

n
(7)

where uα
2

is the quantile of the standardized normal distribution defined by the con-

fidence probability (1 − α), and ε = uα
2

σ√
n

is the accuracy (limiting error) point

estimate of the mathematical expectation value µ. An analysis of formula 7 shows

that:

1. larger n correlates with smaller confidence intervals, hence - as one would expect -

the estimation is more accurate the higher the number of reviews;

2. increasing the probability confidence (1− α) increases also the confidence interval

length;

3. if we fix the accuracy ε and the confidence probability (1−α) then from the formula

ε = uα
2

σ√
n

we can obtain the required (optimal) amount of sampling (i.e. nmin),

that will provide the desired accuracy.

Unfortunately, in real cases σ is not known and cannot be estimated a priori. How-

ever, we can use known point estimate of the true variance σ using as an approximation

the population standard deviation sn obtained either a posteriori (e.g. by crunching

final data from the current or even past editions of a given conference) or dynamically

using current marks for a single contribution. This approximation will not lead to ana-

lytically correct results (σ is supposed to be known in the above method), but it allows

to get an approximated estimate of the accuracy behavior depending on n.

We carried out a number of analyses with actual data from the largest conference C1

in our dataset. Figure 10 shows the results obtained using the computed (a posteriori)

average value for the overall marks’ sample standard deviation sn=1.51 (absolute value,

i.e. not normalized).

In this specific case, in order to have an accuracy around ±1 absolute marks with

confidence level of 0.9 around the “true’” mark we would need around 6 reviews per

paper. However, the figure clearly show that improving the accuracy is going to be hard

since the accuracy curves level off (decrease very slowly) as the number of reviewers

increases.

Another useful approach is to acknowledge that σ is unknown, and use statis-

tical approaches for obtaining the confidence interval of an unknown mathematical

expectation µ from a random variable X with unknown normal distribution N(µ, σ) .

Specifically we can write (following (Brink D., 2008)):

µ̂(n)− tα
2 ;n−1 ·

sn√
n
< µ < µ̂(n) + tα

2 ;n−1 ·
sn√
n
, (8)

where tα
2 ;n−1 is the quantile of the Student’s distribution defined by the confidence

probability (1 − α) and by the number of degrees of freedom n − 1; µ̂(n) and sn are



29

Fig. 10: Accuracy versus amount of sampling (i.e. n number of reviewers) for the most

common values for the confidence probability. i.e. (1− α) = 0.9, 0.95, 0.99, 0.999 and

using the computed approximation for the population standard deviation sn = 1.51 in

C1

Fig. 11: Accuracy of estimation versus confidence probability depending on the con-

sidered number of marks n.

the unbiased point estimates of the normal distribution parameters; ε = tα
2 ;n−1

sn√
n

is

the accuracy (limiting error) point estimate of the mathematical expectation value µ.

Given a specific sample of actual marks, equation (8) can be used to compute the

confidence interval for µ while it cannot be used to find directly the required amount

of sampling. However, we suggest that it can be used to estimate (either in real-time

or a posteriori) whether the number of reviewers for given paper is/was enough to

determine µ with a defined accuracy, or if more reviews are/were needed. We note here,

that similar but informal procedures are currently used in many review processes: for

instance in the case when there is a relevant disagreement in the opinions among experts

for a specific contribution, the review chairs can decide to include other reviewers

in the evaluation. Our statistical approach provides a sound mathematical base for

such procedures and adds a more quantitative dimension - with a detailed estimate of
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Fig. 12: Accuracy of estimation versus confidence probability depending on the con-

sidered number of marks n.

accuracy of the process for a given confidence level- that could be implemented directly

in state-of-the-art electronic editorial systems.

As an example, in Figure 12 we show how the suggested statistical approach could

be used to estimate the accuracy “on-the-fly” during a review process for a particular

contribution and adding more reviewers as a function of the desired target confidence

level. The data for the specific example are based on a contribution from conference

C1 with 6 reviews and corresponding marks (namely equal to (5, 8, 7, 5, 4, 4)) for the

criterion used for the final ranking. In the analysis we sorted marks by review date and

computed the accuracy of the estimation (depending on the confidence probability)

for first k reviews for k in the range (3, 4, 5, 6), as if we would dynamically add new

reviewers (Figure 12).

The accuracy curves show the increase of accuracy in the process as a function of

the confidence level (x-axis) and of the number of reviews added (individual curves).

For instance, for a confidence level of 0.90 the accuracy in the estimate of the mark

values improves from ca. ±2.5 absolute marks with three reviews to ±1.2 when all 6

reviews are considered.

8.2 Confidence level depending on the number of reviewers per paper

We also investigated, how the probability of having an average mark - given by a

particular number of reviewers in a confidence interval with predefined accuracy ±ε -

changes depending on the number of reviewers. For this purposes we used the same

model and the same assumptions that were described at the beginning of the previous

subsection 8.1. We use again standard statistical approaches for obtaining the confi-

dence interval of an unknown mathematical expectation µ when σ is known (µ and σ

are the parameters of mark distribution N(µ, σ)). In particular, from equations 6 and

7 we can obtain:

1− α = 1− 2 ∗ F
„
ε
√
n

σ

«
(9)

where the function F () represents the cumulative density function of standardized

normal distribution.
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Conf. ID sn
C1 0.16
C2 0.19
C3 0.14
C4 0.12
C5 0.17
C6 0.11
C7 0.16
C8 0.20
C9 0.19
C10 0.17

AverageStdDev 0.16

Table 7: Standard deviation for all the conferences

Fig. 13: Confidence level vs number of reviews per paper with error of the mark ε =

0.1

As we wanted to obtain a result for all conferences and not for a single conference

or contribution, we calculated the normalized11 average standard deviation (average

within the papers’ marks) for each available conference (see table 7) and than used

their values to compute an estimate of the unknown σ.

Figure 13 shows the results from equation 9, obtained using three computed (a

posteriori) average values of the sample standard deviation: minimum, maximum and

average value. From these results we can conclude that 3 reviewers per paper - i.e. the

number generally used in peer review in conferences - give highly confident results ((1−
α) > 0.9) only for conferences with high agreement among reviewers (little standard

deviation of the mark). In all other cases the accuracy of paper’s marks estimation

should be kept under control: for the conferences with low agreement, using only three

reviewers produce results with a confidence level around 0.6, i.e. 40% of the times

the mark estimation will be wrong. The method that we described in the previous

subsection 8.1 could have been used here to improve the accuracy during the review

process.

11 the marks before the computation were normalized to the scale [0, 1]
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8.3 Validity: lessons learned

From the exploration of the validity dimension we can derive the following findings and

recommendations:

• The divergence metric is a practical metric to compare the actual ranking of the

conference against various target rankings.

• The application of the divergence metric has uncovered (for the available data

sets) that there is low correlation between the ranking of contributions obtained in

the analyzed review process and the actual impact (citation counts) of the same

contributions in the community. This result is confirmed by the Kendall τ -tests.

• We do not have enough evidence based on the available dataset that the unbiasing

procedure proposed in Section 7 improves the validity of peer review process when

citations are used as target measurable parameter.

• The statistical procedures proposed in section 8.1 can be used by program chairs to

control the accuracy of review both on-the-fly or a posteriori and easily implemented

in current editorial management systems.

9 Analysis of the efficiency of the peer review process

In our view, the efficiency of a peer review process is linked to the effort spent in

determining which contributions are accepted, and in particular to the trade-off be-

tween effort and quality of the review process. It considers both the effort in writing

contributions and in reviewing them. We add also the author’s effort because it can be

affected by multiple phase reviewing process when, for example, in the first phase only

short contribution with main ideas need to be prepared (e.g., extended abstract).

The basic working assumption of this section is that the quality-effort trade-off

exists and that, in general, if a paper or proposal is long, and is reviewed very carefully

by a large number of reviewers (all the reviewers and the chairs are considered to be

experts), the selection is more informed than the case in which, say, one page proposal is

briefly looked at by a couple of reviewers. Time is a precious resource, so the challenge

is how to reduce the time spent while maintaining a “good” selection process that

indeed selects the “best” contributions. A separate issue that we do not address (also

as it is hard to measure) is the fact that a process is affected by the quality of the

reviewers and the amount of discussion or the presence of a face to face discussion.

For now we limit just to metrics that we can derive from raw review data (essentially

marks data).

In the following we identify metrics that can help us understand if the review process

is efficient. The reviewing effort of a review phase is the total number of reviews NR
multiplied by the average time tr (e.g., measured in person-hours) spent per review

in that phase. Correspondingly, the contribution preparation effort is the number of

submissions NC multiplied by the average time spent in preparing each submission

tw. Reviews and submissions can span across NP phases. For simplicity, in the above

definitions and in this section we use the average reviewing or writing time instead of

considering the time spent by each reviewer or author and the fact that different phases

may require different reviewing or writing efforts per contribution. We also assume that

the set of experts is the same for all phases. The extension of the reasoning done here

to remove these assumptions is straightforward.
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In the ideal case - from a quality perspective - all reviewers are equally experts and

read all contributions for as long as they need to take a decision; and contributions are

as long as they need to be for the reviewers to fully grasp their value. With respect to the

review time and contribution length, we assume in particular that as the review time

and contribution length grow, the reviewer is able to narrow down the uncertainty/error

on the review marks he or she wants to give. In other words, it will increase the

confidence that the correct mark for the contribution is within a given interval.

Our hypothesis here is that beyond a certain review time threshold trx and contri-

bution length threshold lx the mark uncertainty remains constant. Reading a 10 pages

paper for 4 hours or 4 days will not likely make a difference (if we are in doubt between

giving a 6 and a 7 we will probably still be in doubt), but one minute versus four hours

will12.

Essentially, in all real cases (conference, journal or project’s proposals evaluation)

the actual review process is far away from the above ideal case. It is therefore of interest

to have some analysis and quantitative data and metrics to measure how far we are

from the ideal case.

Informally, making the review process efficient requires reducing the effort and,

at the same time, minimizing the quality degradation. In the following subsections

we analyzed the process of stopping the reviews when the fate of a paper is clear

and proposed an heuristic procedure to choose the “optimal” number of papers per

reviewer.

9.1 Optimizing the number of reviews

A first line of investigation is around optimizing the number of reviews for submissions

whose fate is clear. Assume that the review process is structured in as many phases

as the maximum number of reviewers per paper (say, we plan to have at most five

reviews for a paper, so at most five phases). In other words we are investigating the

consequences of a sequential assignment of the reviewers. The analysis we want to

make is to understand which is the earliest phase at which we can stop reviewing

a given paper, because we have a sufficiently good approximation of the fate of the

paper, which is the one we would get with all reviews (five in our running example).

In particular, given the number T of submissions we can accept (as long as they get

marks above a minimal acceptance threshold), we want to estimate the earliest point

(i.e. the minimum number of reviews) so that we can state whether a paper will or will

not be in the top T . As an example, if a paper has two strong reject reviews and it is

impossible for it to end up in the acceptance range, we can stop the review process for

this paper just after two reviews. Stopping reviews for guaranteed acceptance is more

complex as it also depends on the marks of other papers (being above a threshold is

not enough as it is a competitive process). However, it is always possible to verify if

there is a possible combination of marks for the missing reviews that can change the

ranking to the point that the paper can end up below the acceptance threshold.

In Figure 14 we show the results of such deterministic approach for a simulated case

where the number of reviewers is |R| = 5, for each criteria Mj the reviewer can assign a

mark between {1, ..., 10} with no half-marks and with a fixed acceptance threshold Ta

12 We recall again that in our work we focus only on the quantitative aspect of peer review
(i.e. marks) and not on the other important dimension of providing constructive feedbacks to
authors.
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Fig. 14: Deterministic and statistical acceptance and rejection analysis for a contribu-

tion. Dark areas at the bottom: 100% rejected. Shaded areas at the top: 100% accepted.

Dashed areas top/bottom: 95% probability accepted/rejected

= 7.0. The dark areas at the bottom of the diagram indicate the cases where the fate

(rejection) of the contribution is already finalized and no further review will change it.

The shaded areas at the upper part indicate the symmetric cases where the acceptance

of the contribution is sure (in this case this is based on the existence of a minimal

acceptance threshold).

In addition to the deterministic analysis mentioned above, which is conservative, we

can also perform a statistical analysis relying on the fact that reviewers’ marks exhibit

some correlation (see our analysis in Section 6). In general, after each phase, we can

estimate the probability of each paper ending up in the accept or reject bin, and to do

so we can also leverage our previous band disagreement measures (see Section 6) to help

estimate the confidence associated to the estimate. The results of such approach are

also depicted in Figure 14 as dashed areas with the corresponding probability estimate

in the figure caption.

Notice that implementing the above process requires either a multi-phase review or

to give to reviewers a priority on what they should review. This in order to increase the

chances that the reviews that would have to review later may not be needed because

the fate of the contributions has already been determined. A more formal analysis of

such process is part of our current research work.

9.2 Effort-invariant approaches

A second approach to the efficiency dimension, is around effort-invariant choices, that

is, varying review process parameters to improve quality while keeping the effort con-

stant. Here we investigate the efficiency of the review process from the view of an

efficient (“optimal” number of papers per reviewer) review distribution among review-

ers.
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Fig. 15: Distribution of average marks for individual papers for C3. On the x-axis we

plot the average marks and on the y-axis the measured density in percentage.

Our working hypothesis is that in all evaluation processes there are different groups

of contributions to evaluate, typically: immature, average, good and eventually excel-

lent papers. We presume that if a reviewer evaluates contributions only from one group,

their evaluation scale will tend to expand, i.e. contributions from the same group could

end up with very diverse marks. If a reviewer would have access to contributions be-

longing to different groups, the scale could be more realistic and probably more correct.

Consequently, we would like to estimate how to distribute the papers among reviewers

in a way such that each reviewer will have at least one paper from each group. The

idea is to use statistical information about the distribution of the average marks for

individual contributions (either an expected one or an historical one where available)

in order to identify typical clusters of contributions for a given review process. Then,

to use statistical approaches to compute the needed number of papers per reviewer in

order to maximize the probability - with a specified confidence level - to have in the

set of reviews at least one paper from each cluster.

In order to show a possible implementation of this idea, we first studied a posteriori

the distribution of the average marks for individual papers and for one criterion (for

example for the most significant one among the marks of the conference). Figure 15

shows the average marks distribution for one of the analyzed conference, namely C3.

This information is used to evaluate the general behavior of the sample as we use it as

an estimation of the mean values density function.

On the basis of this type of distribution, we then determine appropriate boundaries

for papers clusters. As initial parameters in our statistical approach we have:

1. estimate of average mark distribution;

2. user’s selection for cluster boundaries;

3. user’s selection of desired confidence level (1− α).

In the following analysis for conference C3, we chose three clusters - immature,

average and good/excellent papers - with the following range [0, 2.7]; [2.7, 3.7]; [3.7, 5]

correspondingly. The confidence level represents the probability that at least one paper

from the group with minimal probability (pmin) will be assigned to a reviewer (i.e. α

is the probability that in the set of papers for each reviewer there will not be the paper

from the minimal probability group). Then if we enforce that a reviewer reviews with

the probability (1 − α) at least one paper from this group, the papers from the other

groups will appear with higher probabilities.
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If n is the desired value for the number of papers per reviewer, then - assuming

that we have a large number of observations - we can estimate n as: α = (1− pmin)n

hence

n = log1−pmin(α). (10)

If the number of observations (N) is not very large (i.e. the group probability

changes significantly if we pull one paper out) then we can approximate the solution

with the expansion:

α = (1− pmin)

„
1− pmin

N

N − 1

«
· ... ·

„
1− pmin

N

N − n+ 1

«
(11)

In this case, we cannot obtain an analytical expression for n, but we can estimate

it using the following computation procedure:

1. Set initial parameters: average mark distribution, cluster boundaries, confidence

level (1− α).

2. Calculate the cluster distribution {p1, p2, ..., pk} , where k is the number of paper

clusters, pi = Ni
N , i = 1, ..., k, N - total number of papers, Ni - number of papers

in the ith group.

3. Find minimal pi , i = 1, ..., k. Define it as pmin.

4. Obtain n from equation 11.

This approach can be used to estimate the quality of the peer review process dy-

namically (collecting and analyzing marks distribution from reviews as they are coming

in during the evaluation process) or a posteriori (to check within which confidence level

the initial assumption - each reviewer have had at least one paper from each cluster -

has been met).

Results from an a posteriori analysis are reported in Figure 16 with real data

from two conferences: C1 and C3. Review chairs could have seen from the graphs that

reviewers with a small number of papers have had a small probability of reviewing the

papers from all the groups. In particular for these conferences, if the reviewers have

received on average only 4 papers to review the probability of reviewing a paper from

the “immature” cluster13 ranges from 45% to 51% for conference C3 and from 47% to

38% for conference C1. In order to have a confidence level around 80-90% that each

reviewer has seen a contribution from every cluster, each reviewer should have been

assigned around 9-12 contributions for conference C3 and 10-14 for conference C1.

9.3 Efficiency: lessons learned

Our preliminary investigations along the efficiency dimension led us to the following

results:

• definition of a framework and a number of metrics for investigating how to analyze

the efficiency of peer review processes;

• definition of both a deterministic and statistical procedures to support the chairs

of a review process to optimize (reduce) the number of reviews for the papers with

clear fate;

13 Both in C1 and C3 the cluster with minimal probability was the “immature” cluster
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Fig. 16: Number of papers per reviewer for different values of 1−α (0.99 ≤ 1−α ≤ 0.01)

• definition and application of an heuristic procedure for calculating “optimal” num-

ber of papers per reviewer in order to ensure that each reviewer has a good chance

(within a defined confidence interval set by the chairs) to access contributions of

all qualities (immature, average, good/excellent) in order to be more consistent in

their evaluation scale.

It would be interesting to apply our proposed efficiency metrics also to analyze

and optimize the effort spent by both authors and reviewers during their work, but

unfortunately the data about time spent in writing or reviewing are not easily available.

10 Conclusion

In this paper we have presented and discussed the results of the analysis of peer review

data from 10 conferences whose topics were related to the Computer Science field for

a total of ca. 9,000 reviews on ca. 2,800 contributions. We have conducted the analy-

sis along four different dimensions: reliability, fairness, validity and efficiency. Along

with the traditional metrics and analysis found in literature, we have also performed

additional analysis studying the infuence of the mark scale on the rating process, the

robustness of the peer review process and introduced different measures to compare

rankings, disagreement/agreement among reviewers, rating bias, and accuracy of the

papers marks obtained from reviewers.

In regard to reliability of peer review processes, we found evidence in our data

set that there is an overall agreement among the reviewers according to Intraclass

Correlation Coefficient analyses. However, disagreement among reviewers exists as well

and it is relatively high, although different from random processes. Moreover, according

to our proposed band agreement analysis, we found quantitative evidence that reviewers

tend to agree more on very bad or very good papers. Thus, we can claim that the

analyzed peer review processes can be considered reliable mainly for very bad or very

good papers since the analyzed processes tend to produce there much higher agreement

than random or semi-random processes.

In regard to fairness of peer review processes, we have analyzed a specific source of

bias, namely rating bias, to find out if there are reviewers that constantly give higher
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(positive bias) or lower (negative bias) marks than their colleagues while reviewing the

same proposal. We found out that in every conference in our dataset, it is possible

to identify a set of reviewers with a positive/negative bias, that is reviewers with,

respectively, accepting/rejecting bias and that this behavior impacts from 7% to 14%

of the overall submitted contributions in our dataset. However, once the bias has been

detected, program chairs may take some actions to compensate it, as giving the paper

to additional reviewers, or adding/removing the bias values to obtain a new unbiased

final ranking for the contributions. Therefore, though in our data set rating bias is

always present in the marks given by reviews, there are ways to identify it and, luckily,

there are also ways to deal with it to compensate its impact.

From the analyses of the validity of peer review processes, we have found no evi-

dence of correlations between the rankings outcome of the investigated review processes

and the impact of the selected contributions measured by citations; the low correlation

is also confirmed in a similar study of a posteriori review of the same contributions at

a later time. Although it might be that the selected target parameter (i.e., citations)

or the citation source (i.e., Google Scholar) for evaluating the validity of the review

process could not be the ideal ones, our proposed analysis provides a straightforward

procedure to check a-posteriori a review process validity with respect to any specific

(and measurable) target parameter selected by the review process chairs. Moreover,

chairs can also decide to monitor the accuracy of the mark of a paper in terms of the

size of estimation error within a probabilistic confidence level. Our analysis shows that

the standard number of reviewers per paper (typically 3) is often not enough to reach

a satisfactory accuracy (see section 8.1, 8.2). To achieve a small error of estimation

or, in other words, more accurate results with high confidence level, a dynamic control

over mark estimation approach could be used. A possible approach could be to add

reviewers until a predefined accuracy level is achieved.

Finally, we presented some investigations on the efficiency of peer review processes

and reported some preliminary results related to the possibility to devise statistical

approaches to tune review process parameters to improve quality while keeping the

overall effort under control.

We had two main goals in our work: (i) search for scientific evidence that peer

review works (or that it doesn’t), and (ii) search for ways to improve the peer review

process so that it can work better. With respect to the first goal, the analyzed datasets

did not provide us with a definite answer. In the analyzed dataset (10 conference in

Computer Science) we have found that: there is a significant degree of randomness

in the analyzed review processes, more marked than we expected; the disagreement

among reviewers is high and there is a low correlation between the rankings of the

review process and the impact of the selected papers as measured by the most used

indicator of impact, i.e. citations. This is also true in the similar study of a posteriori

review of the same contributions at a later time. If these trends would be confirmed for

more and diverse (i.e. from different domains) review processes then we could affirm

that current peer review processes do not work very effectively.

On the second goal we can be more specific: the proposed analysis model and

framework can be used as the basis to develop a support system in state-of-the-art

editorial management systems to support review process chairs both during the review

and as a posteriori check on the overall quality of the process. Using the various methods

proposed in this paper (e.g. robustness analysis, disagreement analysis, band agreement

analysis, bias analysis, un-biasing procedures, a-posteriori validity analysis with respect

to specific target parameter(s), a-posteriori or on-the-fly marks accuracy evaluation, as
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well as statistical approaches to tune review process parameters) the chairs of a peer

review process could arrive at a deeper understanding of their specific selection process

and pursue a number of appropriate ways to improve it.

We do not claim that our results are general and final, but we think that they

indicate an applicable quantitative methodology to tackle the analysis of peer review

and provide important suggestions to improve current peer review process.

In the future we want to extend the analysis to more conferences and journals

peer review processes also from fields different from Computer Science and analyze

from a more theoretical approach ways to improve the efficiency of current peer review

processes. Finally, we will continue to aim at providing all stakeholders in peer review

processes with an intuitive understanding of what the various metrics imply, in an

effort to explain the numbers, so that all involved stakeholders will more easily assess

“how well” peer review works.
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